<<
>>

Фотопериодическая реакция и температура

В предыдущих разделах мы уже останавливались на некоторых примерах взаимодействия ФПР и температуры. У большинства насекомых с длиннодневным типом фотопериодической реакции повышение температуры приводит к уменьшению критического фотопериода и устранению диапаузы (рис.

14). На каждые 5° критический фотопериод сдвигается на 1-1,5 ч, что соответствует естественным изменениям фотопериода за 2-4 недели. В результате увеличивается срок, в течение которого возможно развитие насекомого. При температурах, близких к сублетальным, развитие идет практически всегда без диапаузы. Такая зависимая от температуры лабильность ФПР дает возможность некоторым видам проникать из умеренной зоны в субтропическую, где фотопериод всегда непродолжителен. Наоборот, "усиление" ФПР при низкой температуре способствует сохранению вида при необычно раннем наступлении осени.

У видов с короткодневной ФПР, как и следует ожидать, реакция на температуру противоположна и высокая температура способствует наступлению диапаузы.

Возможны и другие варианты воздействия температуры на ФПР. Так, у восточной плодожорки Grapholitha molesta Busck. и хлопковой совки Helicoverpa armigera (Hubner) диапауза может быть вызвана коротким фотопериодом только в диапазоне температур 2025°. Такая связь индукции диапаузы с довольно высокой температурой скорее всего объясняется южным происхождением этих видов. Наоборот, у бабочки-медведицы Spi- losoma menthastri Esp. развитие без диапаузы, зависящее также от ФПР, возможно только в пределах температур 20-27°.

Рис.14. Зависимость критической длины светового дня у щавелевой совки Acronycta rumicis L. от температуры, при которой происходило развитие гусениц (по А.С.Данилевскому, 1961)

Рис.14.

Зависимость

критической длины светового дня у щавелевой совки Acronycta rumicis L. от температуры, при которой происходило развитие гусениц (по А.С.Данилевскому, 1961)

Итак, ФПР обычно имеет место в диапазоне температур, оптимальных для роста и развития. В некоторых случаях, однако, ФПР представляется совсем не связанной с уровнем температуры. С другой стороны, известен ряд видов, у которых наступление диапаузы определяется прежде всего температурой. Подобное влияние температуры четко выражено у таких объектов, как, например, живущие в почве личинки некоторых пластинчатоусых жуков, у находящихся в почве яиц саранчовых. К числу таких насекомых относятся также обитающие в древесине или под корой личинки жуков, некоторые вредители запасов, например гусеницы бабочки Plodia interpunctella Hb., a также ряд тропических видов насекомых.

Как и в случае с фотопериодом, на развитие может влиять не только сам уровень температуры, но и направление ее изменений. Так, повышение температуры уменьшает процент диапаузирующих личинок мух Sarcophaga и Calliphora. Понижение температуры в сочетании с уменьшением длины светового дня резко увеличивает склонность куколок бабочки Heliothis zea к диапаузе.

Суточный ход температуры может также влиять на сезонное развитие. Так, стеблевой кукурузный мотылек Ostrinia nubilalis Hb. на 100% диапаузирует при коротком фотопериоде и постоянной температуре, а также при температурном цикле 31° днем и 21° ночью. Если же

цикл температуры инвертирован (31° ночью и 21° днем), то доля диапаузирующих особей резко падает, при любом фотопериоде (S.Beck, 1962). Следовательно, индукция диапаузы зависит от уровня температуры в ночное время.

При содержании насекомых в постоянной темноте продолжительность теплого периода в течение суток может играть роль, аналогичную фотопериоду. Здесь кривая индукции диапаузы в зависимости от продолжительности термопериода очень сходна с кривой ФПР.

<< | >>
Источник: Чернышев В.Б.. Экология насекомых. Учебник. - М.: Изд-во МГУ, - 304 с.: ил.. 1996

Еще по теме Фотопериодическая реакция и температура:

  1. Фотопериодическая реакция (ФПР)
  2. 2. 1. 2. Температура
  3. ТЕМПЕРАТУРА
  4. ТЕМПЕРАТУРА
  5. Температура
  6. Трансферазные реакции. 
  7. Температура.
  8. ’ ВНУТРИГНЕЗДОВАЯ ТЕМПЕРАТУРА
  9. ВНУТРИГНЕЗДОВАЯ ТЕМПЕРАТУРА
  10. РАСТЕНИЯ И ВЫСОКАЯ ТЕМПЕРАТУРА
  11. Принцип «цепной реакции»
  12. Измерения температуры и термостатирование.
  13. ЭВОЛЮЦИЯ ЗАЩИТНЫХ РЕАКЦИИ РАСТЕНИЙ
  14. Влияние температуры на развитие насекомых.
  15. ТЕМПЕРАТУРА ВОЗДУХА В МЕЖСОТОВЫХ ПРОСТРАНСТВАХ