<<
>>

Влияние на насекомых низких и высоких температур

Жизнь любого насекомого возможна только в определенном температурном интервале. Р.С.Ушатинская (1957) в этом отношении различает шесть следующих температурных зон: 1.

Зона активной жизни лежит в среднем в пределах от 3 до 40°.

Примерно в середине этой зоны - температуры, обеспечивающие минимальную смертность и максимальную плодовитость насекомых.

2 Нижняя зона переживания (зона холодового оцепенения). Здесь возможность выжить зависит от уровня температуры, продолжительности ее воздействия и, конечно, от вида насекомого. 3.

Нижняя смертельная (летальная) зона, в которой происходит замерзание и кристаллизация жидкостей тела, а также повреждение кристаллами протоплазмы клеток. Эти необратимые изменения несколько различны у разных видов. 4.

Зона витрификации, в которой жидкость, вместо того, чтобы образовывать кристаллы, становится витрифицированной, т.е. подобной стеклу. Витрификация возможна далеко не у всех насекомых. При этом происходит приостановка всех жизненных процессов, аналогичная анабиозу. В таком состоянии насекомое может вынести охлаждение почти до абсолютного нуля. Однако витрифицированная жидкость неустойчива и может постепенно кристаллизоваться. 5.

Верхняя зона переживания (зона теплового шока). Так же как и в нижней зоне переживания продолжительность жизни насекомых зависит от уровня температуры и длительности ее воздействия. 6.

Верхняя смертельная зона, в которой происходят необратимые явления: коагуляция белков и инактивация ферментов.

Влияние температуры на насекомое во многом зависит от его вида и образа жизни. Насекомые, обитающие в умеренной, а тем более в полярной зоне, наиболее устойчивы к низким температурам. Многие из этих насекомых легко переносят многократное замерзание и оттаивание. В умеренной зоне устойчивость насекомых к холоду закономерно изменяется в зависимости от сезона и наиболее высока в середине зимы, при этом наиболее устойчивыми оказываются насекомые, зимующие не под снежным покровом, а под корой деревьев и в пустых стеблях растений.

Холодостойкость водных насекомых относительно мала в любое время года.

Если охлаждение не является очень глубоким и наступило внезапно, насекомое впадает в состояние холодового оцепенения. При повышении температуры такое насекомое быстро становится активным. В оцепеневшем состоянии насекомые могут без особого вреда для себя находиться от нескольких дней до недель. Временное охлаждение, задерживающее развитие и существенно удлиняющее жизнь насекомого, часто используется энтомологами в практической работе. Обычная температура холодильника (+2 - +4°) вполне достаточна для хранения насекомых. Следует помнить, что насекомые при таком хранении погибают не столько от холода, сколько от высушивания. Поэтому рекомендуется садок с насекомыми помещать в полиэтиленовый плотно закрытый пакет с куском ваты, смоченной водой.

В природе холода наступают в определенное время года, и перед наступлением неблагоприятного сезона в организме насекомого происходят иногда очень глубокие физиологические перестройки. Они связаны с определенным физиологическим состоянием - диапаузой.

Что происходит с насекомыми при дальнейшем понижении температуры? Появление ледяных кристаллов в клетках тканей насекомого, по-видимому, для него всегда смертельно. Тем не менее ряд насекомых способен переносить морозы в течение длительного времени. Таких насекомых можно разделить на две категории (M.J.Tauber et al., 1986): устойчивые к замерзанию (после замерзания внеклеточной жидкости они остаются живыми) и неустойчивые (гибнущие после замерзания, но имеющие специальные приспособления, чтобы ему противостоять). По-видимому, в редких случаях возможно и сочетание устойчивости к замерзанию с механизмами, препятствующими замерзанию. Явление витрификации, если и встречается, бывает сравнительно редко, и само это состояние воды достаточно неустойчиво.

Устойчивость к замерзанию не встречается среди филогенетически низших групп насекомых, а также среди многоножек, скорпионов и пауков. Такую устойчивость выработали лишь некоторые двукрылые, бабочки, жуки и сетчатокрылые, и то лишь на определенной стадии развития.

У этих насекомых жидкости тела замерзают при относительно высокой для насекомых температуре - не ниже -10°С. Особенностью этих насекомых является наличие в гемолимфе особых белковоподобных веществ, способствующих образованию кристаллов льда между органами. Эти кристаллы притягивают к себе молекулы воды, оставшиеся свободными. По-видимому, при этом резко снижается возможность кристаллизации воды внутри клеток. К числу таких устойчивых к замерзанию насекомых можно отнести, например, бабочку-махаона, куколка которого в замороженном состоянии способна переносить температуру до -196° С.

Гораздо более распространена среди насекомых способность противостоять замерзанию. Такие насекомые вырабатывают специальные приспособления, суть действия которых сводится к снижению точки переохлаждения, а также к максимальному удалению веществ, способствующих образованию кристаллов льда по крайней мере внутри клеток. Для таких насекомых при их обитании в умеренной зоне точка переохлаждения, ниже которой возможно замерзание, лежит ниже -30° С, а для насекомых арктической зоны - ниже -60° С.

Каковы реальные возможности повышения холодостойкости у насекомых?

Во-первых, это уменьшение общего количества воды в теле и связывание ее коллоидами. О значении воды для холодостойкости свидетельствует такой факт. Зимующие гусеницы златогузки содержат в теле до 69% воды и выдерживают температуру -14° до 158 дней. Активные же гусеницы в летнее время содержат более 80% воды и могут переносить ту же низкую температуру не более 1,5 -4 ч.

Во-вторых, это увеличение содержания жира. Так, у тех же зимующих гусениц златогузки содержание жира доходит до 6%, в то время как летом оно примерно 4%.

В-третьих, это увеличение количества резервных углеводов, особенно гликогена, являющегося гидрофильным коллоидом.

В-четвертых, это повышение концентрации различных веществ, растворенных в жидкостях тела. Известно, что 1 моль любого вещества на 1 литр раствора понижает температуру замерзания последнего почти на 2° Эффект от нескольких веществ, находящихся в жидкости, суммируется.

Среди таких веществ можно назвать некоторые сахара (трегалоза, глюкоза, фруктоза), специальные белки и аминокислоты. Кроме того, в теле зимующих насекомых нередко в большом количестве (до 25% от массы тела) присутствует широко используемый в технике антифриз - глицерин или аналогичные ему по действию вещества. Глицерин здесь обычно не является только пассивным антифризом и определенным образом распределяется в теле насекомого. Во всяком случае, искусственная инъекция глицерина не всегда приводит к повышению холодоустойчивости. После окончания зимовки глицерин превращается в гликоген.

Необходимость удаления из тела веществ, способствующих появлению кристаллов, приводит иногда к определенным изменениям пищевой диеты. У насекомого, полностью готового к зимовке, кишечник освобождается от содержимого.

Рекорд холодостойкости поставили личинки одного из видов комаров-дергунов, обитающие в горных районах Африки. Эти личинки развиваются во временных водоемах - углублениях скал, заполняемых водой во время дождей. Все эти водоемы вместе с личинками быстро высыхают, но личинки в сухом виде остаются живыми и после увлажнения опять приходят в активное состояние. Личинки в сухом виде без какого-либо ущерба выдерживают температуру почти абсолютного нуля (-270°).

Гораздо сложнее для насекомых противостоять высоким температурам, которые быстро приводят к нарушениям метаболизма, коагуляции белков и гибели. Какое-то время насекомые способны поддерживать температуру тела ниже температуры окружающего воздуха за счет испарения влаги, которое усиливается в результате разрушения высокой температурой воскоподобной оболочки тела. Естественно, что этот эффект определяется влажностью воздуха. Так, черные тараканы во влажном воздухе быстро погибают при +38°, а в сухом, обеспечивающем испарение, выживают какое-то время и при +48°. В некоторых случаях температура тела может быть понижена размазыванием по телу капель жидкости, выделяемых из ротового или анального отверстий (С.В.Томс, 1981).

Результатом специальных физиологических приспособлений является способность некоторых насекомых жить в горячих вулканических источниках при температуре воды до +65°. Таковы личинки некоторых мух-прибрежниц и львинок. Полной им противоположностью являются насекомые, активные на снегу в зимнее время. Для них губительна комнатная температура (+20°). Сходным образом температура +35° за минуты убивает обитающих в пещере при постоянной температуре +11° кузнечиков.

<< | >>
Источник: Чернышев В.Б.. Экология насекомых. Учебник. - М.: Изд-во МГУ, - 304 с.: ил.. 1996

Еще по теме Влияние на насекомых низких и высоких температур:

  1. Г лав а 6 ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА НАСЕКОМЫХ
  2. Влияние температуры на поведение насекомых
  3. Влияние температуры на развитие насекомых.
  4. РАСТЕНИЯ И ВЫСОКАЯ ТЕМПЕРАТУРА
  5. Общее действие высокой температуры на организм.
  6. Влияние температуры на морфологию и окраску
  7. Влияние влажности на насекомых
  8. ВЛИЯНИЕ ТЕМПЕРАТУРЫ И ОСАДКОВ ЗА ВЕГЕТАЦИОННЫЙ СЕЗОННА СТОК С ОСУШЕННЫХ ЛЕСНЫХ ЗЕМЕЛЬ
  9. Высокие плоские и высокие холмистые гряды
  10. Глава 7 ВЛИЯНИЕ НА НАСЕКОМЫХ ВЛАЖНОСТИ И ОСАДКОВ
  11. ВЛИЯНИЕ АНТРОПОГЕННЫХ ФАКТОРОВ НА НАСЕКОМЫХ
  12. Глава 8 ВЛИЯНИЕ НА НАСЕКОМЫХ СВЕТА И ДРУГИХ АБИОТИЧЕСКИХ ФАКТОРОВ СРЕДЫ
  13. ВЛИЯНИЕ АЭРАЦИИ И ТЕМПЕРАТУРЫ НА СТРУКТУРУИ ФУНКЦИОНИРОВАНИЕ МИКРОБНЫХ КОМПЛЕКСОВВЕРХОВОГО ТОРФЯНИКА (МОДЕЛЬНЫЕ ОПЫТЫ) А.              В. Головченко, Т. Г. Добровольская, О. С. Кухаренко, Т. А. Семёнова, О. Ю. Богданова, Д. Г. Звягинцев
  14. ОСОБЕННОСТИ ВЛИЯНИЯ БИОТИЧЕСКИХ ФАКТОРОВ. ЭКОЛОГИЧЕСКИЕ СВЯЗИ НАСЕКОМЫХ С РАСТЕНИЯМИ
  15. ПИЩА КАК ФАКТОР СРЕДЫ И ЕЕ ВЛИЯНИЕ НА НАСЕКОМЫХ
  16. Можжевельник высокий (Juniperus excelsa)
  17. ВВЕРХ ПО ВЫСОКИМ СТВОЛАМ
  18. ГРАМПОЛОЖИТЕЛЬНЫЕ БАКТЕРИИС ВЫСОКИМ СОДЕРЖАНИЕМ Г+Ц
  19. ИНДУСТРИАЛЬНАЯ ТЕХНОЛОГИЯ — ОСНОВА ВЫСОКИХ УСТОЙЧИВЫХ УРОЖАЕВ