<<
>>

Основные этапы эволюции растений и животных

Большинство исследователей признают, что вскоре после возникновения жизни она разделилась на три корня, которые можно назвать надцарствами. По-видимому, больше всего черт исходных протоорганизмов сохранили архебактерии, которых прежде объединяли с настоящими бактериями — эубактериями.
Архебактерии обитают в бескислородных илах, концентрированных растворах солей, горячих вулканических источниках. Второе мощное надцарство — эу- бактерии. Из третьего корня развилась ветвь организмов, имеющих оформленное ядро с оболочкой,— эукариоты. Есть обос-нованная гипотеза (разделяемая все боль-шим числом ученых), что эукариоты возникли в результате симбиоза их предков с пред- ками митохондрий и хлоропла- стов — аэробных бактерий и цианобактерий (рис. 5.3). Эта гипотеза дает удовлетворительное объяснение многим чертам сходства в строении и биохимических особенностях органелл — внутриклеточных источников энергии эукариот,— с таковыми сво- бодноживущих прокариот. Колоссальное значение для развития биосферы в целом имело возникновение и распространение одной из групп эубактерий — цианобакте-рий. Они способны осуществлять оксиген- ный фотосинтез, и в результате их жизне-деятельности в атмосфере Земли должен был появиться кислород в достаточно боль-ших количествах. Появление кислорода в атмосфере определило возможность после-дующего развития растений и животных. Надцарство эукариот очень рано, по-видимому, более чем миллиард лет на-зад, разделилось на царства животных, рас-тений и грибов. Грибы более близки к жи-вотным, чем к растениям (рис. 5.4). До сих пор не вполне ясно положение простейших — следует ли их объединить в единое царство или же разделить на несколько? Наконец, небольшая группа слизевиков на-столько своеобразна, что лишь с трудом может быть включена в царство грибов, с которым его традиционно объединяют. По-видимому, многоклеточность возникла независимо у грибов, растений, кишечнополостных и других животных.
Основные пути эволюции растений. Число видов ныне существующих растений достигает более 500 тыс., из них цветковых примерно 300 тыс. видов. Остатки зеленых водорослей находят в породах архейского возраста (около 3 млрд лет назад). В протерозое в морях обитало много разных пред-ставителей зеленых и золотистых водорос-лей. В это же время, видимо, появились первые прикрепленные ко дну водоросли. Первичные почвообразовательные процес-сы в протерозое подготовили условия для выхода настоящих растений на сушу. В си-луре (435—400 млн лет назад) в царстве растений происходит крупное эволюционное событие: растения (риниофиты) выходят на сушу. В первые периоды палеозоя растения населяют в основном моря. Среди прикреп-ленных ко дну встречаются зеленые и бурые водоросли, а в толще воды — диатомовые, золотистые, красные и другие водоросли. С самого начала эволюции параллельно с настоящими растениями существовали и развивались группы с автотрофным и гетеротрофным питанием, взаимодополняющие друг друга в круговороте веществ. Это способствовало усилению целостности растительного мира и его относительной автономности. Первичные фототрофные низшие растения были также разнообразны по составу, среди них были группы с содержанием хлорофилла «а» и «Ь», с высоким содер-жанием каротиноидов и хлорофилла «с» и, наконец, группы с преобладанием фикоби- линов. Вероятно, между этими группами ор- г А Б В Г Рис. 5.5. Некоторые ископаемые растения карбона: А — кордаит (Cordaites Ievis); Б — сигиллярия (Segillaria); В — лепидодендрон (Lepidodendron); Г— каламит (CaIarnites) ганизмов не было генетического единства. Разнообразие состава первичных фототро- фов было вызвано, несомненно, достаточно разнородными условиями существования и позволяло полнее использовать особенно-сти среды. В конце силура отмечено появление первых наземных растений — псилофитов, которые покрывали сплошным зеленым ковром прибрежные участки суши. Это было важным эволюционным шагом. Происходит перестройка в проводящей системе и покровных тканях: у псилофитов появля-ются проводящая сосудистая система со слабо дифференцированной ксилемой и флоэмой, кутикула и устьица.
Псилофиты оказались и более надежно прикрепленны-ми к субстрату с помощью дихотомически разветвленных нижних осей: у некоторых из них обнаружены примитивные «листья». Псилофиты занимали промежуточное положение между наземными сосудистыми растениями и водорослями: внешне были похожи на водоросли, тело не было дифференцировано на вегетативные органы и имело большую испаряющую поверхность. Дальнейшая эволюция растений в наземных условиях привела к усилению компактности тела, появлению корней, развитию эпидермальной ткани с толстостенными, пропитанными восковидным веществом клетками, замене трахеид сосудами, изменению способов размножения, распространения и т. д. Самая примитивная сосудистая система состояла из трахеид. Переход от трахеид к сосудам — приспособление к засушливым условиям; с помощью сосудов создается возможность быстрого поднятия воды на большие высоты. Переход к сосудам начался в корнях, стеблях, затем в листьях. Начальные этапы эволюции наземных растений связаны с возникновением архего- нйальных форм — мохообразных, папоротникообразных и голосеменных. У всех этих групп женский половой орган представлен архегонием, а мужской — антеридием. Предполагают, что архегониальные произошли от бурых или зеленых водорослей. При выходе на сушу защита гаметангиев водорослей от иссушения обеспечивалась пре-образованием их в архегоний и антеридий. Этому способствовали изменение формы гаметангиев и образование у них много-слойных стенок. С момента выхода на сушу растения развиваются в двух основных направлениях: гаметофитном и спорофитном. Гаметофит- ное направление было представлено мохо-образными, а спорофитное — остальными высшими растениями, включая цветковые. Спорофитная ветвь оказалась более при-способленной к наземным условиям: особого развития достигает корневая система, усложняется и совершенствуется проводящая система, заметно совершенствуются покровные и механические ткани, а также способы размножения (см. ниже) и создаются возможности для снижения частоты проявления возникающих летальных и дру-гих мутаций (в результате диплондизации организма).
В наземных условиях оказались непригодными для размножения свободно плавающие незащищенные половые клетки, здесь для целей размножения формируются споры, разносимые ветром, или семена. Уже в девоне встречаются пышно развитые леса из прогимноспермов, папоротников и плаунов (рис. 5.5). Эти леса еще более распространяются в карбоне, характеризующемся увлажненным и равномерно теплым климатом в течение всего года. Мощные споровые растения — лепидодендроны и сигиллярии — достигали 40 м высоты. В карбоне же получили развитие первые семенные — голосеменные: птеридос- пермы, древесные кордаиты и гинкговые, часть из которых вымирает в перми, около 280 млн лет назад. Генеральная линия эволюции папоротникообразных на суше шла по пути преобразования спорофита (бесполое поколение). Он достиг совершенства как по разнообразию форм (деревья и травы), так и по строению. В засушливых условиях гаметофит (половое поколение) стал уже помехой из-за необходимости капельно-жидкой воды для переноса гамет. Поэтому не удивительны редукция гаметофита и значительное развитие спорофита в ходе дальнейшей эволюции наземных растений. Одним из важных эволюционных приобретений считается появление разноспоровых папоротников, предвестников семенных растений. Начиная с лепидодендрона у некоторых плауновидных (селагинелла), папоротников и семенных папоротников закрепляется разноспоровость; в пазухах спорофитов развиваются мега- и микроспорангии. Такое событие отмечено в силуре — дево-не, т. е. примерно 400 млн лет назад. Ме-гаспорангии имели 4 мегаспоры, а микро-спорангии — множество микроспор. Диф-ференциация спорангиев и спор привела к появлению разных размеров гаметофитов (включая и очень мелких) и разобщению мужского и женского гаметофитов, что в конечном итоге оказало влияние на редук-цию гаметофита (гаплоидного тела). Редук-ция гаметофита способствовала удлинению диплоидной фазы развития организма, удлинению и усложнению процессов дифференциации и онтогенеза. He случайно, что первые разноспоровые достигали гигантских размеров; это сигиллярии, лепидодендроны, гигантские папоротники, каламиты.
Важнейшее событие в жизни голосеменных — превращение мегаспорангия в семязачаток, семяпочку с защитными покровами — интегументами и полное освобождение у всех семенных процесса полового размножения от воды. Микроспорангии у голосеменных превращаются в гнезда пыльника. Спермии большинства голосеменных неподвижны, и перенос их к архего- ниям осуществляется пыльцевой трубкой. Потеря мужским гаметофитом самостоятельности привела к редукции его до пыльцевой трубки с вегетативным ядром и двумя сперматозоидами. Опыление у голосемен-ных осуществляется ветром и нередко насе-комыми, после оплодотворения семязачаток превращается в семя. Заметим, что семя появляется у семенных папоротников еще в девоне, т. е. задолго до развития цветка. Переход к семенному размножению связан с рядом эволюционных преимуществ; диплоидный зародыш в семенах защищен от не-благоприятных условий наличием покровов и обеспечен пищей, а семена имеют приспособления для распространения животными и др. Эти и другие преимущества способствовали широкому распространению семенных растений. Непосредственные предки покрытосеменных пока не найдены в ископаемом виде. Считается, что покрытосеменные происходят от беннетитовых (С.В. Мейен). С последними примитивные покрытосеменные сходны наличием общих черт в строении древесины, устьица, пыльцы, энтомофилии и т. п. Прародиной покрытосеменных считают районы с семиарндным или сезонно сухим климатом, где они имели наибольшие шансы обживать нарушенные экосистемы благодаря высоким темпам генеративного развития и формирования зародыша (Г. Стеббинс). Аналогичными признаками как раз обладали раннемеловые беннетитовые и цикадовые. Есть предположение о появлении признаков, характеризующих цветковые (сосуды в древесине, сетчатое жилкование, завязь, рыльце, двойное оплодотворение), параллельно и порознь у разных родствен-ных и неродственных групп. Цветковые воз-никают, когда все эти признаки концентри-руются в одной группе. Такой путь станов-ления характерен и для других таксонов (см.
гл. 17, 20). Филогенетические взаимоотношения основных групп растений представлены на рис. 5.6. Цветковые растения, постепенно распространяясь, завоевывают обширные пространства. В процессе эволюции покрытосеменных цветок (основной отличающий их орган) претерпевает значительные изменения. Ось цветка — цветоложе — постепенно укорачивается, междоузлия сближаются, спиральное расположение частей цветка переходит в циклическое, происходит процесс уменьшения числа гомологичных частей (олигомеризация). Первые примитивные энтомофильные цветки привлекали насекомых обилием пыльцы, что одновременно способствовало перекрестному опылению. Преимущество получили те растения, у которых высокая наследственная пластичность потомства, большая вероятность опыления и завязы- ваемости семян. В дальнейшем отбор растений пошел по пути привлечения опылителей с помощью нектара, аромата, окраски и специализации цветков на опыление определенными видами насекомых. Таким путем происходило взаимоприспособление расте-ний и животных по соответствующим при-знакам. При опылении насекомыми повы-шается возможность свободного скрещива-ния растений одного вида, что и служит од-ной из причин высокой эволюционной пла-стичности цветковых растений. У цветковых (в отличие от голосеменных) даже деревья представлены множеством разнообразных форм. Цветковые также были приспособле-ны использовать среду путем быстрого раз-вития и накопления органического вещест-ва. В кайнозое (начало — 66 млн лет назад) вся Европа была покрыта пышными лесами теплого и умеренного климатов, включающими дуб, березу, сосну, каштан, бук, виноград, орех и др. В это время леса достигали наибольшего распространения на Земле. В тропической флоре этого периода были представлены фикусы, лавровые, гвоздичные, эвкалипты, виноград и др. В четвертичном периоде кайнозойской эры (2 млн лет назад) увеличилось количество осадков и наступило оледенение значительной части Земли, вызвавшее отступление теплолюбивой третичной растительности на юг (а местами полное ее вымирание), возникновение холодоустойчивых травяни-стых и кустарниковых растений. На огром-ных территориях завершается начатая в миоцене смена лесов степью, формируется ксерофитная и эфемерная растительность с выраженной сезонностью в цикле развития, складываются современные фитоценозы. Таким образом, растительность нашей планеты постоянно менялась, приобретая все более современные черты. Основные черты эволюции царства растений следующие: I. Переход от гаплоидности к диплоид- ности. С диплоцдизацией организма снижался эффект проявления неблагоприятных мутаций, усиливались морфогенетические потенции организма. У многих водорослей все клетки (кроме зиготы) гаплоидны. У более высокоорганизованных водорослей (бурые и др.) наряду с гаплоидными существуют и диплоидные особи. У мхов преобладает гаплоидное поколение при сравнительно слабом развитии диплоидного. У папоротников преобладает диплоидное поколение, од нако и у них гаплоидное поколение (гамезо-фит) еще представлено самостоятельным образованием, у голосеменных и покрыто-семенных наблюдается почти полная редук-ция гаметофита и переход к диплоидной фазе (рис. 5.7). 2. Утрата связи процесса полового размножения с наличием капельно-жидкой воды, потеря подвижности мужских гамет, заметная редукция гаметофита и сильное развитие спорофита, переход от наружного оплодотворения к внутреннему, возникновение цветка и двойного оплодотворения.? 2. Дифференциация тела с переходом к наземным условиям: деление на корень, стебель и лист, развитие сети проводящей системы, совершенствование покровных, механических и других тканей. 3. Специализация опыления (с помощью насекомых) и распространение семян и плодов животными. Усиление защиты зародыша от неблагоприятных условий: обеспечение пищей, образование покровов и др. Основные пути эволюции животных. Царство животных не менее разнообразно, чем царство растений, а по числу видов животные превосходят растения. Описано око- JlO I млн 200 тыс. видов животных (из них около 900 тыс. видов — членистоногих, 110 тыс. — моллюсков, 42 тыс. — хордовых животных) и считается, что это может быть лишь половина существующих видов. Возникновение животных в ископаемых остатках не прослеживается. Первые останки животных находят в морских отложениях протерозоя, возраст которых превышает I млрд лет. Первые многоклеточные животные представлены сразу несколькими типами: губки, кишечнополостные, плеченогие, членистоногие. В морях кембрийского периода уже существовали все основные типы животных. Облик фауны определяли многочисленные хелицеровые (похожие на современных мечехвостов), губки, кораллы, иглокожие, разнообразные моллюски, плеченогие, трилобиты (рис. 5.8). После кембрия эволюция животных характеризовалась лишь специализацией и совершенствованием основных типов. Исключение составляют позвоночные, останки которых обнаружены в ордовике. Это были так называемые щитковые — существа, отдаленно сходные с со-временными круглоротыми (миноги, микси- ны), но покрытые со спинной стороны мощно развитыми костными пластинами. Предполагают, что они защищали первых мелких (около 10 см длиной) позвоночных от огромных хищных ракообразных: В теплых и мелководных морях ордовика обитали многочисленные кораллы, значительного развития достигали головоногие моллюски — существа, похожие на современных кальмаров, длиной в несколько метров. Силурийский период ознаменовался важными событиями не только для растений, но и для животных. Появились животные, дышащие воздухом. Первыми обитателями суши были паукообразные, напоминавшие по строению современных скорпионов. Тем временем в водоемах происходило бурное развитие разнообразных низших по-звоночных, прежде всего панцирных рыб. Предполагается, что первые позвоночные возникли в мелководных пресных водоемах. Постепенно, в течение девона, эти пресно-водные формы завоевывают моря и океаны В девоне же возникают двоякодышащие, кистеперые и лучеперые рыбы. Все они были приспособлены к дыханию в воде. До наших дней дожили некоторые виды двоякодышащих (рис. 5.9), лучеперые дали начало современным костистым рыбам, а кистеперые — первичным земноводным (стегоцефалам). Стегоцефалы появились в верхнем девоне; примерно в это же время возникает другая чрезвычайно прогрессивная группа животных — насекомые. В развитии линий позвоночных и беспозвоночных проявились две разные тенденции в решении одних и тех же задач. Переход в воздушную среду из водной потребовал укрепления основных несущих органов и всего тела в целом. У позвоночных роль каркаса играет внутренний скелет, у высших форм беспозвоночных — членистоногих — наружный скелет. Развитие в среде, требовавшей все более сложных поведенче-ских реакций, решалось в этих двух ветвях древа жизни двумя принципиально разными способами. У насекомых чрезвычайно сложная нервная система, с разбросанными по всему телу огромными и относительно самостоятельными нервными центрами, преобладание врожденных реакций над приобретенными. У позвоночных — развитие огромного головного мозга и преобладание условных рефлексов над безусловными. В каменноугольном периоде появляются первые пресмыкающиеся, что определило начало активного завоевания суши позвоночными. Рептилии благодаря сухим прочным покровам, яйцам, покрытым твердой скорлупой и не боящимся высыхания, были мало связаны с водоемами. В этом периоде возникают и достигают значительного развития такие древнейшие группы насекомых, как стрекозы и тараканы. В пермском периоде начинают исчезать стегоцефалы и широко распространяются различные рептилии. От примитивных рептилий из группы цельночерепных в это время развивается ветвь пеликозавров, приведшая несколько позже — через терап- сид — к возникновению млекопитающих. В конце палеозоя происходит значи-тельное иссушение климата. Поэтому бур-ное развитие претерпевают разнообразные рептилии; до наших дней из триасовых реп-тилий дожили гаттерия и черепахи. Некото-рые рептилии становятся хищниками, дру гие — растительноядными, третьи — вто-рично возвращаются в водную среду (рис. 5.10), обеспечивающую им пищу в виде многочисленных форм костистых рыб и го-ловоногих моллюсков. Однако особенно сильного развития достигают морские реп-тилии в юре (ихтиозавры, плезиозавры). То-гда же пресмыкающиеся осваивают и воз-душную среду — возникают птерозавры, видимо, охотившиеся на многочисленных и крупных насекомых. В триасе от одной из ветвей рептилий возникают птицы; первые птицы причудливо сочетали признаки реп-тилий и птиц (см. рис. 6.3). Рис. 5.11. Схема максимального распростране-ния покровного оледенения в Европе в плейсто-цене. Последнее мощное оледенение, покрывав-шее всю Скандинавию и часть Прибалтики, окон-чилось лишь около 10 тыс. лет назад: I — 230 тыс. лет назад. 2 — 100 тыс. лет назад; 3 — 65—50 тыс. лет назад; 4 — 23 тыс. лет назад; 5 — 11 тыс. лет назад (по данным разных авторов) В меловом периоде продолжается специализация рептилий: возникают гигант-ские растительноядные динозавры, встреча-ются летающие ящеры с размахом крыльев до 20 м. Знаменательные события происхо-дят и в мире насекомых — начинается ак-тивная сопряженная эволюция энтомофиль- ных растений и насекомых-опылителей. Происходит процесс вымирания аммонитов, белемнитов, морских ящеров. В связи с сокращением пространств, занятых богатой прибрежной растительностью, вымирают растительноядные динозавры, а следом — и охотившиеся на них хищные динозавры. Лишь в тропическом поясе сохраняются крупные рептилии (крокодилы). В условиях похолодания исключительные преимущест-ва получают теплокровные животные — птицы и млекопитающие, которые пышно расцветают лишь в следующем периоде — кайнозое. Кайнозой — время расцвета насекомых, птиц и млекопитающих. В конце мезозоя возникают плацентарные млекопитающие. В палеоцене и эоцене от насекомоядных происходят первые хищники. В это же время или несколько позже первые млекопитающие начинают завоевывать море (китообразные, ластоногие, сиреновые). От древних хищных происходят копытные, от насекомоядных обособляется отряд приматов. К концу неогена встречаются уже все современные семейства млекопитающих, на обширных открытых пространствах саванн Африки появляются многочисленные формы обезьян, многие из которых переходят к прямохождению. Одна из групп таких обезьян — австралопитеки — дала ветви, ведущие к роду Homo (см. гл. 18). В кайнозое особенно четко проявляются тенденции в развитии самых прогрессивных ветвей древа жизни животных, ведущих к возникновению стайного, стадного образа жизни (что стало ступенькой к возникновению социальной формы движения материи). В четвертичном, или антропогеновом, периоде кайнозоя наблюдались резкие изменения климата нашей планеты, в основном связанные с постепенным похолоданием. На этом общем фоне неоднократно повторялись фазы особенно резкого похолодания, при которых в средних широтах Северного полушария возникали значительные оледенения суши. Максимального распространения материковые оледенения достигали во время среднего плейстоцена — около 250 тыс. лет назад. На территории Европы в плейстоцене насчитывается по крайней мере пять таких ледниковых периодов (рис. 5.11). Огромное значение для эволюции современной фауны имело то обстоятельство, что одновременно с наступлением ледниковых периодов происходили значительные колебания уровня Мирового океана: в разные периоды этот уровень понижался или повышался на сотни метров сравнительно с современным. При таких колебаниях уровня океана могла обнажаться большая часть материковой отмели Северной Америки и Северной Евразии. Это, в свою очередь, вело к появлению сухопутных «мостов» типа Берингийской суши, соединявшей Северную Америку и Северную Евразию, соединению Британских островов с европейским материком и т. п. В Европе 5—6 тыс. лет назад климат был заметно теплее совре-менного. Однако эти изменения климата уже не играли столь значительной роли в изменении видового состава животного мира, какую стал играть Человек, не только уничтоживший многие виды животных и растений (по некоторым подсчетам, человек к середине XX в. уничтожил более 200 видов животных), но и создавший новых домашних животных и ставящий сейчас грандиозную задачу управления эволюционным процессом. В эволюции животных можно наметить несколько магистральных направлений развития адаптации: 1. Возникновение многоклеточности и все большее дифференцирование всех систем органов. 2. Возникновение твердого скелета (наружного — у членистоногих, внутренне-го — у позвоночных). 3. Развитие центральной нервной системы. Два разных и чрезвычайно эффективных эволюционных «решения»: у позвоночных развитие головного мозга, основанного на обучении и условных рефлексах, и возрастание ценности отдельных особей; у насекомых — развитие нервной системы, связанной с наследственным закреплением любого типа реакций по типу инстинктов. 4. Развитие социальности в раде ветвей древа животных с разных сторон подходящих к рубежу, отделяющему биологическую форму движения материи от социальной формы движения. Перешагнуть этот рубеж смогла лишь одна ветвь приматов — род Человек. 5.3.
<< | >>
Источник: Яблоков А.В.. Эволюционное учение: Учеб. для биол. спец. вузов. 2006

Еще по теме Основные этапы эволюции растений и животных:

  1. 13.5.3. Основные этапы прогрессивной эволюции многоклеточных животных
  2. Основные этапы эволюции биосферы в целом
  3. Основные этапы эволюции рода Homo
  4. 1.1. ПОНЯТИЕ О ЗООГИГИЕНЕ И ОСНОВНЫЕ ЭТАПЫ ЕЕ РАЗВИТИЯ
  5. ГЛАВА 5 Основные черты и этапы истории жизни на Земле
  6. Основные этапы развития и современные школы ветеринарной токсикологии с основами экологии
  7. 2.12. Основные гипотезы об эволюции психики
  8. ОСНОВНЫЕ ФОРМЫ ВОЗДЕЙСТВИЯ ЧЕЛОВЕКА НА РАСТЕНИЯ
  9. Основные приемы уничтожения ядовитых и вредных растений
  10. ОСНОВНЫЕ ТЕНДЕНЦИИ В ФУНКЦИОНАЛЬНОЙ ЭВОЛЮЦИИ ПАРАЗИТНЫХ ПОКРЫТОСЕМЕННЫХ И КЛАССИФИКАЦИЯ ФАКТОРОВ МОРФОЛОГИЧЕСКИХ ПРЕОБРАЗОВАНИЙ
  11. 1.2. ОСНОВНЫЕ ЗАДАЧИ ГИГИЕНЫ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ
  12. Основные местообитания и жизненные формы водных животных.
  13. 1.1. Основные направления науки о поведении животных
  14. ЭВОЛЮЦИЯ ЗАЩИТНЫХ РЕАКЦИИ РАСТЕНИЙ
  15. НЕКОТОРЫЕ ВОПРОСЫ эволюции ПАРАЗИТИЗМА И ИММУНИТЕТА РАСТЕНИЙ
  16. 4.2. Основные направления изучения элементов мышления у животных. Экспериментальные модели
  17. ОСНОВНЫЕ ПРИЕМЫ ФИКСАЦИИ ЖИВОТНЫХ И ТЕХНИКА БЕЗОПАСНОСТИ ПРИ ОКАЗАНИИ ПОМОЩИ
  18. Основные признаки нарушения деятельности систем и органов при интоксикации животных