<<
>>

Прозрачность вещества

Современные представления о механизме взаимодействия электромагнитного излучения и вещества не отвечают на такой, на первый взгляд, простой вопрос: почему, например, более слабые по энергетике радиоволны свободно проходят через лист бумаги, а световые волны нет? Почему тот же лист бумаги, пропитанный маслом, начинает пропускать свет?

Принятая в науке гипотеза переноса света в веществе сводит данный процесс к переизлучению электронами атомов и молекул прозрачной среды фотонов света, к движению зарядов и поля в веществе.

Однако опыты С.И. Вавилова показали, что молекулы среды поглощают кванты света целиком и не обеспечивают их немедленного переизлучения. Да и сам процесс переизлучения в этом случае должен носить вероятност-

9—1212 ный характер, что противоречит наблюдениям. Поэтому данная гипотеза не в состоянии ответить на выше поставленные вопросы.

В рамках гипотезы эфирной природы света световая (эфирная) волна в среде распространяется в виде волны возмущения колебаний межатомного эфирного поля (МАЭП) этой среды. Прозрачность же вещества (среды) определяется его способностью пропускать световые волны без существенных искажений по частоте и амплитуде.

На прохождение световых волн в веществе должны оказывать влияние как структура расположения атомов относительно друг друга (форма решетки), так и строение электронных слоев атомов.

Рассмотрим влияние этих факторов на прохождение световых волн в прозрачной среде на примере алмаза и стекла.

Алмаз по своему химическому составу — углерод. Он имеет кристаллическую решетку октаэдрической формы, при которой расстояния между соседними атомами по всем граням одинаковы и имеют минимальную величину (а = 3,5595 А). Прозрачность алмаза резко меняется в зависимости от наличия или отсутствия в нем примесей азота. Для алмазов с примесями азота характерна низкая фотопроводимость.

Они также поглощают излучения в инфракрасном (между 8-10 мкм) и в ультрафиолетовом (от 3300 А) диапазонах. Безазотные алмазы практически изотропны (физические свойства независимы от направления), имеют высокую фотопроводимость, не поглощают инфракрасные излучения и прозрачны для ультрафиолетовых (до 2200 А) излучений, обладают чрезвычайно высокой теплопроводностью.

Стекло — это твердое аморфное вещество, которое в зависимости от состава прозрачно в той или иной области оптического диапазона. Стекло получают при переохлаждении расплава, содержащего стеклообразующие компоненты (оксиды кремния, бора, алюминия, фосфора и др.) и оксиды металлов (лития, калия, магния, свинца и др.).

Основой стекла является молекула оксида кремния. Молекулярная спектроскопия показывает, что данная молекула имеет химическую формулу SiO4, т.е. между атомом кремния и атомом кислорода наблюдается одновалентная связь. Форма молекулы оксида кремния представляет собой тетраэдр. А так как атом кремния четырехвалентен, то каждый атом кислорода в молекуле SiO4 одновременно связан другой валентной связью с соседним атомом кремния, т.е. атомы кислорода равноценны (двусвяза- ны), так как принадлежат одновременно двум соседним тетраэдрам. Все связи между атомами Si-O имеют одинаковую длину (а = 1,60 А), и поэтому тетраэдры SiO4 имеет правильную конфигурацию. Они объединяются в двухмерные (слои) и трехмерные (пространственные) комплексы, которые имеют также правильную конфигурацию [66, с. 463].

Прозрачными средами являются также такие жидкости, как вода, спирты, эфиры, растворители, растительные масла и др. Что же у них общего с алмазом и стеклом?

Формула молекулы воды — H2O, а между атомом кислорода и молекулой водорода существует вполне определенная связь (рис. 3.7.3). Ассоциация молекул воды при комнатной температуре составляет от 3 до 6. Молекулы спиртов, эфиров, растворителей,! растительных масел состоят из атомов углерода, водорода и кислорода и имеют определенную структуированную форму.

Так, например, молекула этилового спирта CH3CH2OH, а ее структура приведена на рис. 4.7.1. Подобные структуры имеют молекулы эфиров, растворителей, масел и других органических соединений.

Для структуры любой прозрачной среды характерным является высокая плотность «упаковки» атомов (молекул) и одинаковые расстояния между ними по всем направлениям. У алмаза такую структуру среды обеспечивает октаэдрическая форма кристаллической решетки. У стеклообразующего оксида кремния расстояние, как между атомами, так и между молекулами, также одинаково и минимально. Такая форма расположения атомов (молекул) обеспечивает максимальную плотность их «упаковки» и одинаковое расстояние между ними по всем направлениям.

Молекулы жидкости (воды, спиртов и др.) можно представить в виде «клейких» шариков, заполняющих некоторый объем. Поэтому расстояние между молекулами жидкости также будут минимальны и одинаковы по всем направлениям, т.е. пространственное расположение молекул в жидкости такое же, как и молекул в стекле. Поэтому стело иногда называют «застывшей жидкостью». Отсюда следует, что одним из характерных свойств прозрачных сред является минимальное и одинаковое расстояние между атомами (молекулами), т.е. все они изотропны.

Зависимость фотопроводимости среды от структуры расположения атомов (кристаллической решетки) следует из следующего примера. Графит, как и алмаз, является углеродом, но в отличие от алмаза имеет кристаллическую решетку призматической формы, грани которой • неодинаковы, т.е. расстояние между атомами в графите по каждому направлению разное. И такая структура расположение атомов углерода в графите делает его непрозрачным.

Рассмотрим возможный механизм воздействия структуры прозрачной среды и электронных слоев ее атомов на фотопроводимость.

Любая прозрачная среда должна оказывать некоторое сопротивление прохождению световой (эфирной) волны. Величина этого сопротивления определяется направлением, амплитудой и частотой колебаний эфитонов МАЭП, и, прежде всего, внешних электронных слоев атомов среды.

Так как прозрачные среды изотропны, то в каждый момент времени направление колебаний эфитонов должно быть равновероятно для любого направления, т.е. в прозрачных средах не должно быть направленных колебаний эфитонов в МАЭП и внешних электронных слоев атомов. Частота колебаний эфитонов в МАЭП и во внешних электронных слоях определяется строением атомных оболочек. А так как расстояния между атомами прозрачной среды минимальны, то и амплитуда колебаний эфитонов также будет иметь минимальную величину. Прозрачные среды в том или ином сочетании в основном состоят из атомов углерода, кремния, кислорода и водорода.

Что имеется общего во внешних электронных слоях этих атомов? Конфигурация строения электронной оболочки атома углерода (6С12) имеет вид — 2s2/2p2, атома кремния (14Si28) - 3s2/3p2, атома кислорода (8016) - 2s2/2p4. У атома углерода во втором (внешнем) электронном слое в состоянии вир находятся по два электрона, и у атома кремния в третьем (внешнем) электронном слое также находятся в состоянии s и р по два электрона. У атома кислорода во втором (внешнем) электронном слое в состоянии s находятся два электрона, а в состоянии р четыре электрона. Из конфигурации строения электронных оболочек углерода, кремния и кислорода видно, что заполнение электронных слоев у них нормальное (без пропусков), а количество электронов всегда четно. У атома водорода всего один электрон, но число атомов водорода в молекуле прозрачной среды всегда четно, а значит и количество электронов тоже четно.

Атомная масса углерода равна 12, кислорода —16, а кремния — 28. Поэтому из-за большей массы частота колебаний ядра атома кремния будет ниже, чем частота колебаний ядер углерода и кислорода. Однако у углерода и кислорода внешним электронным слоем является второй слой, а у кремния — третий. А так как частота колебаний эфитонов в электронных слоях с удалением от ядра атома повышается, то частоты колебаний эфитонов во внешних электронных слоях атомов углерода, « кислорода и кремния, по-видимому, должны быть равны друг другу.

При падении световой волны на прозрачную среду происходит сложение гармонических колебаний этой волны с колебаниями эфитонов МАЭП среды. При этом обычно рассматриваются два предельных

случая: сложение колебаний одинакового направления и сложение взаимно перпендикулярных направлений. В нашем случае такой подход не может быть использован, ибо в каждой микрообласти МАЭП среды направления колебаний эфитонов изотропны. Поэтому интегральное воздействие колебаний МАЭП на световую волну должно быть минимальным (в идеальном случае равно нулю). Этому способствует и ориентация спинов электронов во внешних электронных слоях атомов прозрачной среды: так как число электронов всегда четно, то у каждой пары электронов спины ориентированы в противоположных направлениях, т.е. спин атома равен нулю. Поэтому они практически не оказывают влияние как на энергетику механических колебаний эфитонов МАЭП, так и на их ориентацию по электрической и магнитной составляющим.

Отсюда следует, что в прозрачных средах колебания эфитонов в межатомном эфирном поле и внешних электронных слоях атомов должны быть по направлению — изотропны, по амплитуде — минимальны, а по частоте равны друг другу.

Энергия механических колебаний эфитонов упругой световой волны значительно выше, чем энергия колебаний эфитонов МАЭП прозрачной среды (выше по частоте колебаний, больше по амплитуде, распространяется в одном направлении). Световая волна «вынуждает» эфитоны МАЭП совершать колебания с той же частотой, амплитудой и в том же направлении, что и колебания эфитонов падающей на прозрачную среду световой волны. Поэтому фотопроводимость прозрачной среды обратно пропорциональна затратам энергии световой волны на это преобразование.

Если лист бумаги пропитать маслом, то он начинает пропускать свет. Это явление объясняется тем, что молекулы масла заполняют все промежутки между нитями целлюлозы и тем самым образуют светопроницаемые каналы для прохождения световой волны. Различные примеси значительно ухудшают фотопроводимость прозрачной среды.

Так, например, наличие примесей оксида азота (N2O5 — бесцветные кристаллы) в алмазе ухудшает его фотопроводимость, так как кристаллы оксида азота образуют микрообласти, в которых нарушаются свойства прозрачной среды.

Еще в первой половине XIX века было замечено, что даже окись азота (NO) оказывает существенное противодействие прохождению световых волн. По данному вопросу Дж. Тиндаль писал: “Через воздух, кислород, водород и азот волны эфира проходят не поглощаясь, и температура этих газов не повышается заметно, даже при употреблении самых сильных температурных лучей. В этом отношении окись азота достойна особого внимания, в ней химически соединены те самые

атомы, которые существуют не соединенными в воздухе; но способность поглощения сложного тела в 1860 раз превосходит способность поглощения воздуха» [26, с. 20].

В том же случае, когда на среду падает эфирная (электромагнитная) волна, энергия механических колебаний эфитонов которой меньше энергии колебаний эфитонов межатомного эфирного поля среды, то в результате сложения волн происходит амплитудная модуляция колебаний эфитонов межатомного эфирного поля (рис. 4.7.2) в направлении распространения падающей волны. После прохождения среды эфирная волна уже свободно распространяется в окружающем среду эфирном пространстве. 

<< | >>
Источник: Микерников Николай Григорьевич. Эфир Вселенной и современное естествознание. Основы эфирной физики. 2009

Еще по теме Прозрачность вещества:

  1. Прозрачность,
  2.    Болезни обмена веществ
  3. ОРГАНИЧЕСКОЕ ВЕЩЕСТВО ПОЧВЫ
  4. Влияние химических веществ. 
  5. СОДЕРЖАНИЕ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ
  6. Передвижение веществ и их обмен
  7. СЛИЗИСТЫЕ (ОБВОЛАКИВАЮЩИЕ) ВЕЩЕСТВА
  8. Поступление веществ в растение
  9. Индуцирующие вещества
  10. РОЛЬ ЖИВОГО ВЕЩЕСТВА
  11. Создание органического вещества. 
  12. ОТВЕШИВАНИЕ И ОТМЕРИВАНИЕ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ
  13. Доступность питательных веществ почвы
  14. НЕЙРОЛЕПТИЧЕСКИЕ И ТРАНКВИЛИЗИРУЮЩИЕ ВЕЩЕСТВА
  15. 2.3.5. Внутриклеточный поток веществ
  16. СИНТЕЗ И РАЗЛОЖЕНИЕ ГУМУСОВЫХ ВЕЩЕСТВ
  17. 2. Живое вещество и его функции в биосфере
  18. БОЛЕЗНИ ОБМЕНА ВЕЩЕСТВ
  19. ОСОБЕННОСТИ ОБМЕНА ВЕЩЕСТВ У МИКРООРГАНИЗМОВ