БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ АЗОТАИ ИХ НАРУШЕНИЕ
Радиоактивные разогревы планеты, образование расплавленной мантии сопровождались выделением газообразных соединений азота и накоплением его в первичной атмосфере, в составе которой N2 доминирует («-ДО15 т) и в настоящее время. Остывающая лава, газовые фумаролы вулканов продолжают поставлять в биосферу азот, его окислы, хлористый и углекислый аммоний.
Электрохимические разряды, фотохимические реакции, сверхвысокие температуры и давление способствовали возникновению на планете неклеточных молекулярных форм органических азотистых соединений.
Появление свободно живущих азотфиксирующих бактерий и бактерий гетеротрофов, вероятно, положило начало биогенному обогащению первичной биосферы соединениями азота, образованию аминокислот, белков, минеральных соединений азота (аммонийных, азотнокислых солей). Не исключено, что биогенная фиксация азота предшествовала возникновению фотосинтеза, протекала в бескислородной анаэробной обстановке далекого прошлого и осуществлялась микроорганизмами типа клостридиум. Бактерии этого рода и поныне являются важнейшими агентами фиксации азота в анаэробных условиях.
Биологическая фиксация азота микроорганизмами распространена в природе значительно шире, чем это представлялось 20—30 лет назад. Кроме бактерий группы Rhizobium, фиксирующих азот в клубеньковых образованиях на корнях бобовых растений, широко развита несимбиотическая (ассоциативная) фиксация азота многочисленными гетеротрофными бактериями и грибами (Умаров, 1983). Этот тип фиксации азота осуществляется сотнями видов разнообразных микроорганизмов, проживающих в ризосфере растений, в почве и на поверхности стеблей и листьев (фил- лосфера).
В среднем ассоциативная (несимбиотическая) фиксация азота в экосистемах составляет в. год 40—50 кг/га; но в мировой литературе есть указания на то, что несимбиотическая фиксация азота в условиях тропиков достигает 200—600 кг/га в год (Умаров, 1983). При этом большая часть (gt; 90%) масса азота фиксируется в ризосфере с использованием энергии корневых выделений и отмирающих мелких корешков. Поэтому при наличии покрова растительности почвы всегда фиксируют в несколько раз больше азота, чем почвы чистых паров.
Как установлено исследованиями Умарова (1983), ассоциативная фиксация азота характерна для большинства видов травянистых и многих древесных растений, включая и культурные их формы. Высокой потенциальной способностью фиксации азота в ризосфере отличаются луговые, черноземные и каштановые почвы (90—330 кг/га), а также горно-лесные почвы Кавказа (до 180 кг/га). Только за вегетационный период на полях этот вид фиксации может дать почвам 30—40 кг/га дополнительного азота. Это и не удивительно, так как азотфиксирующие микроорганизмы могут составлять от 20 до 80% их общей численности.
( Существует явная положительная связь между процессами фиксации азота микроорганизмами и фотосинтезом растений в экосистемах. Чем выше продуктивность фотосинтеза растений, тем больше азота фиксируется в почвах. \Это важнейший механизм биогеохимии азота в биосфере и в земледелии.
\ Велика в биогеохимии азота роль синезеленых водорослей, многочисленные виды которых также обладают способностью фиксировать азот одновременно с процессом фотосинтеза. Синезеленые водоросли (Cyanophyta) обогащают азотом почвы, особенно орошаемые рисовники, речные, озерные и болотные воды и наносы. Но они живут и на поверхности голых скал или пустынных почв (табл. 21).
Развитие растительного покрова и связанных с растениями микроорганизмов значительно усилило вовлечение азота атмосферы в состав биомассы. Усложнение форм жизни на планете вызвало удлинение пищевых цепей, накопление живой и мертвой органики на суше и в океане.
Это создало возможность длительного существования органических соединений азота в биосфере и литосфере. Особенно велика в этом роль травянистых растений. Наземная и подземная части травянистой растительности ежегодно потребляют от 20—25 до 600—700 кг/га азота (обычно корни содержат в 2—6 раз больше азота, чем наземная часть). При этом суммарная биомасса, как правило, содержит углерода в 10—50 раз больше, чем азота. Все это подтверждает огромную общую роль углерода и азота в создании фитомассы (Титлянова, 1979). Но соединения азота легко выщелачиваются из тканей растений влагой дождей. Поступая в почвы, они повторно потребляются растениями.Насколько сложны и мало еще изучены биогенные циклы азота, свидетельствуют установленные факты передачи соединений азота от растения к растению (одного и различных видов) через корневые выделения в почву, а возможно, прямым контактом корешков. Этот удивительный механизм показывает, как ’’экономны” растения в азотном питании. Вероятно, это явление существует и в биогеохимии других элементов.
Как известно, белковость зерна пшеницы и содержание в них азота возрастает с уменьшением атмосферных осадков в степях Русской равнины. Это уже установлено и для содержания общего азота в биомассе травянистых растений. В степных условиях содержание азота в сухой биомассе трав достигает 2—2,6%; при увеличении влажности оно снижается до 1-1,5%.
Все эти факты свидетельствуют о громадной роли растительного покрова (особенно трав) и микроорганизмов в биогеохимии азота на суше. Развитие растительного покрова, возникновение почвообразовательного процесса (300-400 млн. лет назад), формирование гумусовой оболочки и почвенного мелкозема, его снос и накопление в виде толщ осадочных пород расширили процесс перевода азота атмосферы в биосферу, подняв его содержание в последней до уровня п • 1015 т.
В то же время необходимо подчеркнуть, что возврат азота в атмосферу через денитрификацию - столь же универсальный процесс, как фиксация
и нитрификация.
Этим процессом обеспечивается глобальный круговорот азота на планете.Окислительно-восстановительные условия внутри почв весьма гетеро- генны. Даже в аэрированных почвах есть участки с дефицитом кислорода, где может происходить денитрификация. Обилие свежей подвижной органики и пересыщение почв влагой всегда резко усиливают процессы денитрификации после дождей, при заболачивании, при орошении. Еще более выражена денитрификация в водных ландшафтах (болота, озера, эстуарии и т.д.).
Этот направленный общепланетарный биогеохимический процесс имеет полициклический характер. Преобладающая часть фиксированного в природе азота через микроциклические повторные превращения, нитрификацию и денитрификацию в конечном счете возвращается в виде молекулярного газообразного азота (N2) в атмосферу. Но по мере становления биосферы нарастали продолжительность существования и размеры массы органических и минеральных биогенных соединений азота на планете. Увеличилось количество погребенных органических осадков. Продолжительность отдельных микроциклов общеземного биогеохимического круговорота азота колеблется в настоящую эпоху от малой (дни, недели, месяцы) в тканях микроорганизмов до значительной (годы) в экосистемах травянистой растительности и до большой (десятилетия, столетия, тысячелетия) в древесных экосистемах и в почвенном гумусе. Полные земные циклы азота, оказавшегося в осадках рек, озер, морей, в горючих ископаемых земной коры, охватывают время порядка десятков тысячелетий, сотен тысяч и миллионов лет.
Естественные биогеохимические циклы азота (как и углерода) в биосфере были ’’почти замкнутыми”, но имели характер направленного расширенного воспроизводства запасов в биосфере. Биосфера не только не отдавала полностью захваченные массы азота и углерода, но прогрессивно увеличивала их суммарные запасы в фиксированной форме (в гумусе, торфе, в массе ископаемых углей, нефти, сланцах, битумах и т.д.) .
Антропогенная эпоха внесла заметные изменения в сложившиеся природные циклы азота.
Главное, что произошло и происходит, это (кроме земле-Рис. 47. Мировое производство удобрений (данные ФАО)
1 — общее; 2 — азот; 3 — фосфор; 4 — калий
делил) появление в биосфере нового антропогенного промышленного механизма фиксации масс азота в виде десятков миллионов тонн азотных удобрений, а также поступление в окружающую среду окислов азота от больших масс сжигаемых ископаемых топлив (теплоцентрали, транспорт^ авиация, ракеты). Техногенные источники соединений азота в биосфере быстро растут, удваиваясь каждые 6—7 лет. Уже в 70—80-х годах XX в. ежегодно в мире производится (в расчете на азот) 50—60 млн. т/год азотных удобрений (табл. 22). В начале XXI в. эта величина может достигнуть 100—150 млн. т/год. Вероятно, к этому времени техногенный приток азота в биосферу может сравняться со всеми биогенными формами его поступления или превысить их (рис. 47).
В антропогенную эпоху, особенно в современный период, процесс обогащения окружающей среды соединениями азота заметно усилился. Как нами отмечалось ранее, происходит процесс техногенной азотизации окружающей среды, сопровождаемый сложным комплексом положительных (рост урожаев, увеличение доли белков в питании) и отрицательных (канцер, метогемоглобинемия, увеличение кислотности почв и атмосферных осадков) последствий. Уничтожение лесов, степей (и микоризы), замена бобовых злаками, разрушение гумусовых горизонтов почв, богатых микрофлорой, сокращение поверхности почв также вызвали дополнительные изменения в биогеохимии азота в биосфере. Все эти изменения, часто противоположного характера, не изучены и не оценены количественно. По-видимому, все же намечается тенденция уменьшения роли биогенной фиксации азота в общем круговороте его на планете.
Именно на этом фоне нарушений нормального круговорота азота в природе минеральные удобрения почв внесли отмеченные выше изменения
Таблица 22.
Производство минеральных удобрений на 1980 г., тыс. т (по данным ФА О)
Континенты и страны |
Азот |
Фосфор |
|
производство |
потребление |
производство |
|
Северная Америка |
11 829 |
10 490 |
9 212 |
Западная Европа |
11 137 |
9 418 |
5 881 |
Всего в капиталистических |
25 154 |
21 287 |
17 642 |
странах |
|||
Африка |
167 |
494 |
673 |
Латинская Америка |
1 343 |
2 488 |
1 532 |
Всего в развивающихся странах |
7 115 |
10 165 |
3 982 |
Всего в социалистических странах |
21 527 |
19 993 |
10 856 |
Итого в мире |
53 795 |
51 445 |
32 480 |
*В туках это составляет 350—400 млн. т/год. |
в приходные статьи баланса азота и в географию его распределения, а также подняли общий уровень концентрации нитратов и аммонийных солей в почвах и водах. Но еще более серьезным фактором нарушения баланса, уровня концентрации и форм соединения азота в атмосфере и особенно в гидросфере и почвах оказалось современное топливно-энергетическое и транспортное хозяйство.
По ориентировочным данным, эмиссия аммиака и различных окислов азота при сжигании угля, нефти, мазута, бензина, торфа, сланцев и т.д. вместе составляет ежегодно около 200—350 млн. т в виде газов и аэрозолей. Окисление аммиака и окислов азота приводит к образованию главным образом азотной кислоты и отчасти аммонийных солей, выпадающих на сушу и поверхность океана. Если эти цифры преувеличены даже в два раза, все же приходится признать, что эмиссия соединений азота в атмосферу уже стала заметным компонентом в приходных статьях азотного цикла на нашей планете.
В свете этих фактов необходимо глубже понять будущие нужды земледелия в азотных удобрениях, пути глобальной, воздушной и водной миграции соединений азота на планете и выяснить области, где преимущественно происходит накопление азотнокислых и аммонийных соединений. Это тем более необходимо, что выбросы окислов азота в атмосферу будут продолжаться и даже увеличиваться. Уже установлены факты выпадения подкисленных атмосферных вод в Канаде, Скандинавии, США, что сопровождается снижением pH почв и местных вод (обычно под влиянием совместных выпадов с разбавленными растворами серной кислоты). Подкисление среды будет усиливать выветривание минералов, вынос из почв кальция, магния и других элементов питания растений, что увеличит потребность в известковании полей.
Следует указать еще на один фактор нарушения нормального уровня концентрации и круговорота азота в природе. Это отходы индустриального животноводства и птицеводства, а также отбросы и стоки нечистот современных крупных городов. Отходы и стоки этого происхождения очень
Фосфор |
Калий |
/>Всего | ||
потребление |
производство |
потребление |
производство |
потребление |
5 660 |
8 673 |
5 984 |
29 714 |
22 134 |
6 059 |
5 340 |
5 476 |
22 358 |
20 952 |
14 308 |
14 666 |
12 578 |
57 461 |
48 173 |
698 |
_ |
222 |
841 |
1113 |
2 274 |
11 |
1 464 |
2 886 |
6 223 |
5 567 |
И |
2 889 |
11 108 |
18 622 |
10 632 |
11 826 |
9 320 |
44 209 |
39 945 |
30 508 |
26 503 |
2 4787 |
112 778 |
106 740* |
велики. В мире насчитывается более 3 млрд, голов скота, производящих огромные количества отходов. Современные птицефабрики, предприятия индустриального животноводства, города создают многочисленные очаги аномально высокого содержания азота и фосфора в виде органических и минеральных соединений, которые локально пресыщают почвы, ручьи, реки, озера, устья рек и эстуарии. Иногда в таких почвах содержание N-N03 достигает 400 частей на миллион (ppm), a N-NH4 — до 2200 ppm.
По мнению ученых, городские стоки, отходы животноводства и эрозия почв играют не меньшую, а иногда и большую роль в загрязнении почв и вод соединениями азота, до токсичного уровня (Cooke, Williams, 1970).
Повышение концентрации соединений азота в природных водах является тревожным фактом. В речных водах лесных областей умеренного климата содержание нитратов достигает 0,3—0,5 мг/л, а аридного климата — 1,2— мг/л. В дренажных водах оросительных систем концентрация N03 обычно около 5-6 мг/л, но бывает и 10-15 мг/л. В почвенных растворах засоленных орошаемых почв наблюдались концентрации N03 до 100— 300 мг/л. В грунтовых водах иногда бывает концентрация нитратов порядка 10—15 и даже 50—100 мг/л. За 25 лет (1945—1970 гг.) регулярных наблюдений в штате Иллинойс содержание нитратного азота в водах поверхностного стока, по средним и максимальным данным, увеличилось в два- три и даже четыре раза (табл. 23).
Обогащаются избыточными концентрациями нитратов не только поверхностные воды, но и воды подземные — главный источник снабжения населения питьевой водой. Нитраты проникают в подземные воды на глубины 10—15 м и даже больше, вызывая повышение их концентрации до 10— 15 мг/л N, что уже явно опасно для людей (в пересчете на N03 это составляет 45—60 мг/л).
Подсчитан суммарный баланс азота для территории США (Accumulation of Nitrate, 1972). Общие поступления азота в почвы США выражаются величиной 21,0 млн. т N в год (в том числе с атмосферными осадками млн. т, с минеральными удобрениями 7,5 млн. т и биогенная фикса-
Период |
Число водораз- делов |
Концентрация нитратов, мг/л N |
Среднее годовое количество, кг/га |
|
средняя | максимальная | |||
1945-1951 | 11 | 0,4-2,4 | 0,9-9,0 | 2,3-8,8 |
1951-1956 | 10 | 0,5-3,0 | 1,7-6,1 | 1Д-7,3 |
1956-1961 | 25 | 0,5-3,7 | 1,3-12,3 | 0,7-12,8 |
1961-1966 | 26 | 0,3-4,2 | 0,9-12,3 | 1,3-13,4 |
1966-1970 | 30 | 0,4-8,5 | '2,4-20,4 | 2,2-37,2 |
Таблица 23. Концентрация нитратного азота и количество азота в водах поверхностного стока на отдельных водоразделах штата Иллинойс (NAS of USA, 1972)
Таблица 24. Оценка потребления и возврата азота на территории США в 1970 г.
Фиксация не сим биотическая 1,2
Фиксация симбиотическая 3,6
Поступление с осадками 5,6
Химическая фиксация 7,5
Минерализация органического азота почвы 3,1
О бщее поступление 21,0
Использование в питании растений-животных-человека и сырье Производство волокна 0,2
Производство сахара 0,6
Производство протеина растительного происхождения 0,9
Производство протеина животного происхождения 15,1
Общее количество 16,8
Общее потребление ^ 21,0
Не использованный в пищевых цепях (разность) 4,2
Судьба азота, вовлеченного в питание и сырье Потре бляе мый людьми 1,2 />Потребляемый животными 4,2
Другие расходы 15,6
Годовой возврат в атмосферу
В форме аммония или окислов азота с парами воды 5,6
Потери за счет денитрификации в сточных водах 5,0
Денитрификация из почвы 8,9
Общее количество 19,5
Общее поступление 21,0
Ежегодное количество, удервкиваемое почвой и водой 1,5 ция 4,8 млн. т). Из этого количества около 17 млн. т идет на производство продуктов питания и текстильное сырье, а 4 млн.т не используется (табл. 24).
Все виды денитрификации (в том числе в водной среде более 10 млн. т) составляют около 18,5 млн. т, и около 1,5 млн. т ежегодно остается в почвах и водах (см. табл. 24). Данные по денитрификации здесь явно
преувеличены. Остаток азота в водах и почвах по крайней мере в два-три раза выше.
В итоге рассмотрения элементов современного биогеохимического цикла азота на суше намечаются следующие главные формы поступления его соединений: биогенная фиксация азота в почвах микроорганизмами симбиотического и несимбиотического типа; 2) поступление в растворы с метаболитами пищевых цепей, с отмершим органическим веществом, с продуктами минерализации органического вещества почв; 3) поступление окислов азота из продуктов сжигания горючих ископаемых; 4) внесение соединений азота в почвы в виде органических и минеральных удобрений; перенос и накопление нитратов при испарении грунтовых вод.
Расходные статьи баланса азота на суше слагаются из следующих главных форм: 1) поглощение соединений минерального азота высшими и низшими растениями и уход их в пищевые цепи экосистем; переход соединений азота в органические формы с образованием гумуса; денитрификация и возвращение в конечном счете в атмосферу большей части азота в газообразной молекулярной форме N2 и частично в форме окислов и аммиака; смыв, вынос и отчуждение соединений азота из биологических циклов в геологические; захоронение на геологически длительное время в осадочных породах, в горючих ископаемых или соляных месторождениях.
Еще по теме БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ АЗОТАИ ИХ НАРУШЕНИЕ:
- БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ АЗОТА И УГЛЕРОДАВ ЕСТЕСТВЕННЫХ И АНТРОПОГЕННО НАРУШЕННЫХБОЛОТНЫХ ЭКОСИСТЕМАХ
- 3. 3. Биогеохимические циклы элементов
- ВЗАИМОДЕЙСТВИЕ АЗОТА, ФОСФОРА И КАЛИЯ В ПИТАНИИ РАСТЕНИЙ ПРИ ИСПОЛЬЗОВАНИИ ИМИ НИТРАТНЫХ И АММОНИЙНЫХ ФОРМ АЗОТА [22]
- Симптомы ЗАБОЛЕВАНИЙ, СВЯЗАННЫХ С НАРУШЕНИЕМ ПИТАНИЯ И СОДЕРЖАНИЯ РАСТЕНИЙ Симптомы нарушения произвольного питания
- 3.4. УЧЕНИЕ О БИОГЕОХИМИЧЕСКИХ ПРОВИНЦИЯХ
- 3.5. ПРОФИЛАКТИКА БИОГЕОХИМИЧЕСКИХ ЭНЗООТИЙ
- ЦИКЛЫ МИЛАНКОВИЧА
- ПОЛОВЫЕ ЦИКЛЫ У ЖИВОТНЫХ РАЗНЫХ видов
- ПОЛОВЫЕ ЦИКЛЫ У ЖИВОТНЫХ РАЗНЫХ видов
- Глава X ОСОБЕННОСТИ БИОГЕОХИМИЧЕСКОЙ МИГРАЦИИПРОДУКТОВ ВЫВЕТРИВАНИЯ И ПОЧВООБРАЗОВАНИЯ
- БИОГЕОХИМИЧЕСКИЕ ВЗАИМООТНОШЕНИЯОКЕАНА И ПОЧВ
- БИОГЕОХИМИЧЕСКИЙ КРУГОВОРОТ В БОЛОТНЫХ ЭКОСИСТЕМАХ[2]Н. П. Косых, Н. П. Миронычева-Токарева, Е. К. Вишнякова
- БИОСФЕРНАЯ РОЛЬ БОЛОТ. БИОХИМИЧЕСКИЕ ЦИКЛЫ ВЕЩЕСТВ ЕСТЕСТВЕННЫХ И ЭКСПЛУАТИРУЕМЫХ БОЛОТНЫХ ЭКОСИСТЕМ
- НАРУШЕНИЯ МИНЕРАЛЬНОГО ОБМЕНА
- Почвы, нарушенные механическими воздействиями
- Рекультивация нарушенных земель
- НАРУШЕНИЯ ТЕЧКИ
- НАРУШЕНИЯ ОБМЕНА ВЕЩЕСТВ Ожирение (Adipositas)
- КРУГОВОРОТ АЗОТА