Газовая фаза почвы


Почва почти всегда содержит большое количество пор (10-60% объема), частично заполненных водой и газами. Состав почвенных газов, с одной стороны, определяется скоростью биохимических процессов, происходящих в почве, с другой — поступлением газов из атмосферы.

Абиотические процессы газовыделения и связывания газов на фоне перечисленных играют весьма скромную роль. Оценивая роль газов в почве, академик В.И. Вернадский (1926) писал: «Почва, взятая без газов, не есть почва. Роль почвы в истории земной коры отнюдь не соответствует тонкому слою, какой она образует на ее поверхности. Но она вполне отвечает той огромной активной энергии, которая собрана в ее живом веществе и которая способна к переносу благодаря проникающим в почву газам. Говоря о значении биохимических процессов в почвах и о значении почвы в области биосферы, мы, другими словами, скрыто указываем на первенствующую роль газов в почвенных процессах и на значение этих газов в газовом обмене земной коры».
Раскрытие роли почвенных газов шло главным образом по пути выяснения интенсивности и значения поглощения почвой кислорода и выделения углекислого газа. Другие газы изучались мало. Установлено, что эти процессы идут в огромных масштабах: потребление кислорода за 1 ч составляет 1000-4000 л/га; примерно в таких же масштабах выделяется и углекислый газ. Рассчитано, что запасов кислорода в почве в связи с интенсивностью его потребления почвенными микроорганизмами и корнями растений хватило бы всего на 12-48 ч, в некоторых почвах — на 100 ч, если бы его запас не пополнялся из атмосферы. Газообмен между воздухом и почвой идет весьма интенсивно. Обычно в пахотном горизонте за каждый час происходит почти полное обновление воздуха. Построенная модель газообмена в системе почва-атмосфера позволила определить, что главную роль в газообмене играет диффузия и подчиненную, но для некоторых условий весьма существенную, — конвекция. Последняя в большой степени связана с разностью температуры почвы и воздуха, изменениями барометрического давления, влиянием ветра, выпадением осадков и изменением уровня грунтовой воды и верховодки. Одно время большое значение придавази так называемому «дыханию почвы» по Дояренко. Из-за разновременных суточных изменений температуры почвы и воздуха почва в определенное время засасывает атмосферный воздух, а в другое — как бы выдыхает газы. С помощью прямых опытов и расчетов показано, что простая диффузия имеет большее значение в газообмене, а описанное явление — лишь подчиненное. Скорость газообмена резко уменьшается при сильном увлажнении почвы. При переходе от слабоувлажненной до водонасыщенной почвы она уменьшается в миллион раз. Но даже на больших глубинах содержится некоторое количество газообразного и растворенного кислорода, и восстановительные условия наблюдаются только в некоторых локусах.
Почвенные микроорганизмы и корни растений резко изменяют газовую фазу почвы. По газовому составу почвенный воздух в десятки и сотни раз отличается от атмосферного воздуха, причем такие различия наблюдаются несмотря на то, что, как отмечалось, почвенный и атмосферный воздух быстро обмениваются. Даже этот быстрый обмен не приводит к выравниванию содержания газов в атмосфере и почве, т.е. продукция и потребление газов в почве идут очень быстро. Градиент концентраций между почвой и атмосферой поддерживается благодаря интенсивной деятельности почвенной биоты. Почва выступает как мощный ршулятор газового состава атмосферы.
Почвенный воздух содержит в 10-100 раз больше углекислоты и во много раз меньше кислорода, чем атмосферный воздух. Содержание азота несущественно отличается от атмосферного. Кроме того, почвенный воздух всегда содержит пары воды и ряд микрогазов, а также летучие органические вещества, которые в каждый данный момент, хотя и содержатся в небольших количествах, но из-за быстрого круговорота, а также сильного физиоло-
гического действия могут иметь большое значение в балансе веществ в экосистеме.
При изучении газового обмена почв опыты обычно ставят по принципу «черного ящика», когда измеряется только газообмен между почвой и атмосферой и не определяется истинная интенсивность процессов, происходящих в самой почве. Например, в почве происходит образование метана и его частичное потребление. Интенсивность процесса учитывается только по выделению метана, т.е. по разности между его образованием и потреблением, или, другими словами, по превышению процесса газообразования над потреблением. Такие определения не могут дать представления об истинных масштабах процесса образования метана и его потребления. Почвенные микроорганизмы, как правило, способны проводить прямо противоположные процессы: образование С02 и его поглощение, связывание атмосферного азота в процессе азотфиксации и его выделение в процессе денитрификации, образование водорода или недоокисленных газообразных соединений азота и их использование. Принцип рассмотрения почвы как «черного ящика» пригоден для оценки роли почвы в изменении состава атмосферы, и для некоторых исследований такой подход вполне достаточен, но он не может дать представления об интенсивности процессов в почве. Истинная интенсивность процессов в почве может быть во много раз больше, чем кажется, если о ней судить только по выделению или поглощению газов почвой.
Большинство работ, выполненных по изучению роли микроорганизмов в газовом обмене в почве (микрогазы, органические летучие вещества), посвящено изучению чистых культур и их способности осуществлять газовые превращения, а также отчасти учету их численности в почвах. Эти работы дают представление только о качественной характеристике процессов (табл. 5, 6, 7).
Определение интенсивности процессов газообразования и потребления газов в почве проводится двумя принципиально разными способами: 1)в природе — актуальная, естественная, природная активность, 2) в модельных опытах (чаще всего в почвенных образцах), в которых создаются оптимальные условия для протекания данного процесса (потенциальная активность). Часто при таких условиях процессы проходят в десятки, сотни и тысячи раз интенсивнее, чем в естественной среде.
Модельные опыты, хотя и позволяют выявить потенциальные возможности почвы и до некоторой степени пригодны для полу- количественной оценки содержащихся в почве микроорганизмов,
Таблица 5
Примеры летучих органических веществ, образуемых микроорганизмами и их влияние на другие микроорганизмы
{по Stotzky, Schenck)

Продуцент

Летучее органическое вещество

Испытуемый
организм

Характер
воздействия

Примечания

Fusarium

альдегиды,

Fusarium оху-

подавляют про-

активным веще-

оху sporum,

спирты,

sporum, Rhizo-

растание спор

ством, по-ви- •

Rhizopus

органиче-

pus stolonifer,


димому, был

stolonifer

ские кислоты, эфиры

Cunninghamel- la elegans


ацетальдегид

Trichoderma

ацетальде-

различные

подавляют рост

активными ве-

sp.

гид, этанол,

грибы и бак-

грибов, не ока-

ществами, по-


ацетон, этилен

терии

зывают влияния на бактерии

видимому, были ацетальдегид, этанол, СО2

Phomes scu-

цианистый

различные

подавляют рост

различно

tellatus, Ma- rasmius oreac- les, Pholiota aurea, Clito- cybe geotmpa

водород

грибы и бактерии

и спорообразование у некоторых фибов, обычно не влияют на бактерии


Aureobasi- dium pullu- lans

этанол

Armillaria
mellea

стимулирует
образование
ризоформ


Agrobacterium

неиденти-

Fusarium оху-

подавляют рост

действие изме-

radiobacter,

фицирован-

sporum.

и спорообразо-

няется в зависи-

A. rhizogenes,

ные

F. congluti-

вание, измене-

мости от проду-

Bacillus ce-


nans, Gela-

ния в морфоло-

цента и тест-

reus, Entero-


sinospora ce-

ГИИ колоний и

культуры; на-

bacter aero- genes, Escherichia coli, Micrococcus iuteus, No- cardia coral- lina, Proteus vulgaris, Ser- ratia marces- cens


realis, Penicil- lium viridica- tum, Trichoderma viride, Zygorhynchus vuilleminii

гиф

блюдается как стимулирование, так и подавление; характер действия зависит от концентрации

участвующих в процессах газообмена, но совершенно непригодны для определения реальной интенсивности процессов газообмена, осуществляющихся в почве в естественных условиях.
Изучение газообмена в почвах затрудняется их микрозональ- ным строением. Любая почва содержит множество микрозон с различным составом газов, в которых развитие микроорганизмов
Таблица 6
Примеры летучих органических веществ, образуемых микроорганизмами в анаэробных условиях

Продуцент

Летучие органические вещества

Clostridium sp.

муравьиная, уксусная, пропионовая, капроновая, изокапроновая, валериановая, изовалериа- новая, акриловая, кротоновая кислоты, 2,3-бу- тандиол, метанол, этанол, изобутанол, изопен- танол, ацетоин, диметилсульфид

Смешанные бактериальные

муравьиная, уксусная, пропионовая масляная,

культуры, различные чис-

валериановая, изовалериановая, капроновая,

тые культуры бактерий

молочная, янтарная кислоты, уксусный альдегид, ацетоин, этилацетат, диацетил, этанол, 2,3-бутандиол и еще ряд неидентифицирован- ных веществ

Почва в анаэробных уело-

метан, этан, этилен, пропилен, бутан, изобутан,

ВИЯХ

пропан, бутен, ацетальдегид, ацетон, метилке- тон, метилпропилкетон, диацетил, этанол, н- и изопропанол, н- и изобутанол, уксусная кислота, метилмеркаптан, диметилсульфид, диме- тилдисульфид

Таблица 7
Примеры неорганических веществ, превращаемых микроорганизмами в летучие органические вещества

Неорганическое
вещество

Органический
продукт

Микробы, осуществляющие превращение

Источник
микроорганизмов

Ртуть

монометилиро-

различные бак-

почвы, осадки,


ванная и димети- лированная ртуть

терии и грибы

сточные воды, чистые культуры, образуются в анаэробных условиях

Теллур

диметилтеллурит


сточные воды, чистые культуры

Селен

диметилселенит


почвы, сточные воды, чистые культуры

Мышьяк

диметилирован- ный и тримети- лиро ванный мышьяк


чистые культуры

Хлор

метилхлорид


чистые культуры

Бром

метил бромид


чистые культуры

идет в специфических условиях. Положение о быстром газообмене между атмосферным и почвенным воздухом может быть принято только в общей форме и не может быть распространено на все почвенные микрозоны.
Как известно, внутри почвенных агрегатов диаметром 2000- 5000 мкм (агрономически ценная структура), содержится защемленный воздух, который с большим трудом подвергается обменным процессам. Это и дает возможность для развития в близком соседстве аэробных и анаэробных, метанобразующих и метанис- пользующих микроорганизмов и т.д. Даже небольшое количество влаги в почве затрудняет газообмен из внутриагрегатных пор, а большое — из межагрегатных. Необходимо тщательное изучение газообмена в этих микрозонах. Почти единственным путем для этого является имитирование микрозон в макромасштабах. Обычно берется образец почвы, в него вносится избыточное количество субстрата, почва увлажняется и помещается в термостат при температуре, оптимальной для протекания процесса. Таким способом изучают действие летучих органических веществ — фунги- стазис и бактериостазис почв. Следует еще раз подчеркнуть, что в таких случаях воспроизводится не естественное состояние почвенной массы, а только условия в определенных почвенных зонах в макромасштабе, т.е. зона определенного типа начинает доминировать. Естественная почва не представляет собой единую среду обитания, а состоит из множества различных микрозон, где микробы развиваются относительно изолированно по принципу комплекса. В модельных опытах при избытке органического вещества комплекс почвенных микроорганизмов начинает действовать как единое целое. Микробная система переходит из одной категории в другую: от микрозонального типа, характерного для почвы, к мак- розональному, например, при внесении во весь объем почвы глюкозы. Часто данные, полученные в искусственных условиях, переносят на всю почву в целом, в то время как более обоснованно их можно было бы переносить на отдельные микрозоны.
Почва должна рассматриваться как множество микро- и ме- зосред обитания микроорганизмов с различными условиями в отдельных микрозонах, в том числе и в отношении их газового режима. Микрозональность в почве позволяет одновременно развиваться аэробам и анаэробам. В разных микрозонах часто идут прямо противоположные процессы газового обмена, и связь микрозон между собой, по-видимому, в первую очередь осуществляется через газовую фазу, наиболее подвижную по сравнению с другими фазами почвы и самими микроорганизмами.

Почвенный воздух всегда содержит некоторое количество парообразной воды. Она имеет большое значение в перераспределении воды по микрозонам и в выравнивании потенциала влаги во всей почвенной массе. Большую часть времени почвенный воздух в ряде зон близок к насыщению водяными парами. Снабжение почвенных микроорганизмов газообразной водой имеет существенное значение для их развития, особенно в засушливых районах. Нужно отметить, что большинство почвенных микробов способно активно расти и развиваться в почве с относительной влажностью менее 100%. При этих условиях транспорт парообразной воды может обеспечивать ее поступление в клетки.
Почвенный воздух содержит в десятки и сотни раз больше углекислого газа и часто во столько же раз меньше кислорода, чем атмосферный. Однако культивирование почвенных микроорганизмов обычно проводится в атмосферном воздухе термостатов, и специфика этого экологического фактора не учитывается. Большое внимание уделялось созданию низкого окислительно-восстановительного потенциала, удалению кислорода при культивировании анаэробов и меньшее — созданию повышенного содержания С02, которое оказывает существенное влияние на развитие и морфологию почвенных микроорганизмов.
После инкубации почвы при повышенном содержании С02 обнаруживаются микробы, более устойчивые к нему, причем более вероятна селекция микроорганизмов, нежели их адаптация. Если посев из почвы культивировать при повышенной концентрации углекислоты, на чашках развивается больше микроорганизмов. Имеются данные, что изменяется и качественный состав выделяемых микроорганизмов. Высказывается мнение, что преобладание в почве грибов родов Penicillium, Aspergillus, Fusarium, Trichoderma обусловлено их адаптацией к газовому режиму почвы и способностью давать в таких условиях обильное спорообразование. Штаммы грибов из нижних почвенных горизонтов более устойчивы к повышенным концентрациям С02 и низким концентрациям 02, чем аэробные бактерии и актиномицеты.
Под действием повышенной концентрации углекислого газа изменяется морфология микроорганизмов. Высокая концентрация углекислоты иногда приводит к дрожжеподобному росту грибов, что показано, например, для Mucor rouxii, Fusarium sp. При пониженном содержании 02 и повышенном С02 некоторые бактерии начинают формировать фимбрии.
Предполагается, что различие в морфологии почвенных и лабораторных форм микроорганизмов до некоторой степени связано со спецификой состава почвенного воздуха. Морфологические изменения микроорганизмов могут вызываться аммиаком и рядом летучих органических соединений.
Газы и летучие органические соединения только частично поступают в почву извне и в основном образуются в самой почве, причем их источником могут быть микроорганизмы, растения и животные. Наибольшее разнообразие газообразных веществ в почве образуют микроорганизмы: углекислый газ, окислы азота, азот, аммиак, сероводород, водород, метан, этан, бутан, пропан, этилен, пропилен, бутен и еще ряд газообразных углеводородов. Они проводят превращения соединений металлов. Микробы проводят процессы как образования, так и разрушения органических соединений ртути. Почвенные микроорганизмы вызывают процесс метилирования и переводят малотоксичную металлическую ртуть в монометилированную и диметилированную ртуть CH3Hg+, (CH3)2Hg, которые отличаются высокой токсичностью (см. табл. 7). Образуются также диметилсульфид (CH3)2S, метил- меркаптан CH3SH, этилмеркаптан C2H5SH идр.
Все газы, которые микроорганизмы способны образовывать, они могут и изменять. Благодаря соседству и многократному повторению аэробных и анаэробных микрозон, достаточно плотному расположению микроорганизмов внутри и на поверхности почвенных агрегатов, а также сложности системы пор в почве, по которым движутся газы, почва представляет собой весьма совершенную ловушку для газов (исключение составляют макрогазы, например С02, пары воды, которых очень много и которые интенсивно не используются микроорганизмами). Можно предположить, что только небольшой части микрогазов и летучих органических веществ удается вырваться наружу в атмосферу. Поверхность пор капилляров и агрегатов заселена микроорганизмами, которые могут весьма совершенно перехватывать диффундирующие, особенно энергонесущие газы.
Потеря газов, несущих запас энергии, невыгодна для экосистемы, и обычно такие газы должны использоваться в ней полностью или почти полностью. Например, метан во многих случаях выделяется в таких малых концентрациях, при которых он уже не может улавливаться микроорганизмами и обеспечивать их жизнедеятельность.
Судить о продукции микрогазов в почве (Н2, СО, СН4, H2S) по их выделению из почвы нельзя. В некоторых случаях из почвы выходят микрогазы, причем в значительных количествах, например при переувлажнении, когда аэробная зона перестает соседствовать с анаэробной. Они могут уходить в верхние слои атмосферы, но могут поглощаться другими почвами (другими биогеоценозами). Предстоит выяснить масштабы этих процессов и установить, можно ли этот обмен считать правилом или исключением. Вероятно, в ряде случаев изменение интенсивности выделения микрогазов почвой может в первую очередь сигнализировать о нарушении нормальной микробиологической деятельности в биогеоценозе, например, при загрязнении почв. В условиях сильного антропогенного воздействия почвенные микроорганизмы не могут справиться с газовой нагрузкой на почву или справляются с ней, но в ущерб газовому равновесию в биосфере. Например, количество окиси серы промышленного происхождения в атмосфере достигло больших концентраций, особенно вблизи заводов. В глобальном масштабе половина серы атмосферы антропогенного происхождения. Из-за ее наличия дождевая вода, выпадающая в ряде промышленных районов, имеет pH 4. Это приводит к подкислению почвенного раствора, причем почвенные микроорганизмы не в состоянии восстановить гомеостатическое состояние в почве по pH и по содержанию серы. Естественный микробный механизм, который должен восстановить равновесие в системе, не срабатывает, величина воздействующего фактора превышает запас прочности (буферное™) комплекса почвенных микроорганизмов. Во многих случаях происходят подкисление почвы и вынос кальция. Сказанное в большей степени относится к естественным экосистемам, например лесным почвам. В окультуренных почвах такие антропогенные факторы, как физиологически кислые удобрения, известь или аммиак оказывают гораздо большее влияние на свойства почвы, чем кислые атмосферные осадки. Окись серы — один из самых токсичных газов для почвенной биоты, хотя сульфатредуцирующие бактерии всегда содержатся в почве и, казалось, могли бы превращать серную кислоту в сероводород, который, как установлено, в почвах сразу же связывается с металлами, превращается в сульфиды и обезвреживается. Однако этого не происходит, вероятно, из-за недостаточно восстановительных условий, имеющихся в почве.
В противоположность этому закись углерода, которая в последнее время стала поступать в почвы в гораздо больших масштабах по сравнению с естественной природой, видимо, полностью используется почвенными микроорганизмами (бактериями, грибами). Буферная емкость комплекса почвенных микроорганизмов в этом отаошении оказывается очень большой.
Примером нарушения газового равновесия в биосфере может быть выделение недоокисленных соединений азота в процессах жизнедеятельности нитрификатеров, денитрификатеров и метанокисляющих бактерий при внесении высоких доз азотных удобрений. При попадании больших количеств азотных соединений почвенные микроорганизмы реагируют на нарушение гомеостаза и начинают выбрасывать азот из почвы в атмосферу и грунтовые воды (денитрификация, нитрификация). Равновесие в почве восстанавливается, но ценой нарушения баланса в атмосфере и грунтовых водах. Отсюда ясно виден вред большого количества связанного азота в биосфере. Лимитирование развития организмов азотом менее вредно для биосферы, чем его избыток. В этой связи становится понятной экологическая целесообразность потери способности к азотфиксации при переходе от прокариот к эукариотам. Если бы все эукариоты фиксировали азот, в биосфере создался бы избыток этих токсичных в больших дозах продуктов. Человек, изготовляя большое количество азотных удобрений, нарушает равновесие в экосистемах и в биосфере в целом.
Особо следует остановиться на летучих и газообразных веществах, образуемых растениями и их корневой системой. Это различные вещества, оказывающие большое влияние на жизнь почвы и почвенных микроорганизмов. Насколько велико их действие, трудно сказать, так как процессы выделения этих веществ изучены только в искусственных условиях и очень мало известно о масштабах этих процессов в природе. Органические летучие вещества прорастающих семян и проростков могут служить источником углерода для микроорганизмов (бактерии, актиномицеты, грибы, дрожжи). Короткоцепочечные летучие органические вещества относительно простой структуры, выделяемые растениями в изолированное пространство, используются микробами филлосферы и ризопланы как источник углерода.
Однако в большинстве работ органические летучие вещества рассматриваются не как источники углерода, а как стимуляторы или ингибиторы. Особенно много работ такого рода выполнено с фитопатогенными грибами. В качестве примера можно привести некоторые из них. Многие летучие органические вещества растений влияют на прорастание спор грибов, а также участвуют в аттракции и инфекционном процессе (фитопатогенные и микоризные грибы). Большая роль отводится терпенам и ряду других газообразных (этилен) и летучих веществ (альдегиды). Установлено, что прорастание спор Penicillium digetatum подавляется различными альдегидами (С5-С9), которые являются летучими органическими веществами цитрусовых.
Гексеналь из листьев гинкго играет важную роль в устойчивости этого растения к грибам, этот альдегид токсичен для грибов. Ингибирующее действие могут оказывать серосодержащие летучие вещества из растений (метилизотиоцианат, аллилизотиоциа- нат, бутилизотиоцианат, метил меркаптан, диметилсульфид). Некоторые гликозиды могут разлагаться с образованием цианистого водорода. Можно привести множество примеров такого рода, так как выполнены сотни работ по изучению газообразных и летучих веществ растений. Однако все опыты были смоделированы, и поэтому количество и концентрация этих веществ в природных условиях остаются неизвестными. В связи с этим неясно, какую экологическую роль они играют. Между тем вопрос о роли газов и летучих органических веществ микробного и растительного происхождения в регулировании жизни в почве является одним из центральных в экологии почвенных микроорганизмов.
Газообразные вещества являются первым претендентом на роль переносчиков информации в экосистеме (средовых гормонов), так как они могут передавать информацию наиболее быстро из-за быстрой диффузии газов.
Исходя из представления о «жесткой» организованности мик- робоиеноза в почве и о наличии в ней всеобщего единого регулятора Смит приписал общую регулирующую роль этилену. Однако эта концепция основывалась на лабораторных опытах, в которых условия микрозоны воспроизводились в макромасштабах, и этилен вряд ли может играть существенную и универсальную роль во всей массе почвы. К такому заключению приводят следующие факты. Почва имеет микрозональное строение, и в каждой микрозоне процессы идут относительно независимо и разновременно. Трудно предположить, что есть моменты, когда вся почвенная масса насыщается этиленом. В естественной почве этилен почти никогда не обнаруживается. По крайней мере исследователи, определяющие азотфик- сацию ацетиленовым методом, всегда проводят контрольные определения на наличие в почве этилена, но обычно этилена нет, если почва естественная и не обогащалась органическими веществами, а также не подвергалась другим сильным воздействиям. Этилен, если он выделяется, используется многочисленными почвенными микроорганизмами, способными осуществлять этот процесс, и поэтому не может накапливаться. Имеются данные, что этилен не используется в анаэробных условиях.
До сих пор неясен вопрос о фунгистазисе и бактериостазисе (микробостазисе) в почвах, т.е. отсутствии роста при казалось бы благоприятных условиях. В некоторых работах предполагается, что это явление может быть обусловлено накоплением летучих органических веществ. В модельных опытах установлено, что летучие органические вещества могут задерживать прорастание спор грибов и рост некоторых почвенных бактерий. Однако насыщение всей массы почвы этими веществами в природных условиях представляется весьма проблематичным. Скорее всего в природе микробостазис в первую очередь объясняется недостатком необходимых питательных веществ. Добавление питательных, в том числе и летучих органических веществ, может приводить к снятию микробостазиса. Существенным фактором фунгистазиса в природных условиях может быть недостаток кислорода в определенных микрозонах. Интересная гипотеза о том, что микробостазис вызывается катаболитной репрессией, была высказана В.С. Гузевым. Явление катаболитной репрессии в широком понимании этого термина состоит в том, что продукт ферментативной реакции задерживает синтез и подавляет активность фермента. Например, добавление глюкозы подавляет разложение крахмала амилазами. Это явление четко проявляется на почвах разных типов. Очевидно, по типу катаболитной репрессии помимо глюкозы могут действовать и другие вещества. Нельзя не согласиться с теми авторами, которые утверждают, что микробостазис может вызываться рядом причин. В одном случае, например, фунгистазис был связан просто с накоплением аммония. />Действие летучих органических веществ в почве может проявляться скорее всего локально. Поскольку эффект этих веществ зависит от концентрации (стимуляция, нейтрализм, подавление), очень трудно определить экологическую роль этих веществ, хотя, как показано в многочисленных работах, эти вещества могут оказывать сильное действие на активность, динамику популяций и на экологию микроорганизмов в целом. Пока не известна интенсивность процессов образования определенных веществ в естественной почве, их значение будет неясным. Следует отметить, что современные методы (газовая хроматография и др.) дают принципиальную возможность для изучения интенсивности процессов образования макрогазов, микрогазов и органических летучих веществ. Изучение действия этих веществ проходило в несколько этапов: 1) установление подавляющего или стимулирующего действия веществ на чистых культурах без химической идентификации веществ, 2) химическая идентификация веществ и их количественное определение в лабораторных условиях, 3) определение количества и качества летучих органических веществ в почвенных образцах в лабораторных условиях, 4) такие же определения, но в почвах в естественных условиях. Последний этап фактически еще не начинался, но его нужно пройти в ближайшее время. 
<< | >>
Источник: А.Г. Звягинцев, И.П. Бабьева, Г.М. Зенова. БИОЛОГИЯ ПОЧВ. 2005

Еще по теме Газовая фаза почвы:

  1. Жидкая фаза почвы
  2. Твердая фаза почвы
  3. Резорбция газов. 
  4. Первая фаза метаболизма ксенобиотиков. 
  5. Вторая фаза метаболизма ксенобиотиков (реакции синтеза и конъюгации). 
  6. ГАЗОВЫЙ СОСТАВ ВОЗДУХА
  7. Энергосберегающие способы основной обработки почвы в технологии возделывания кукурузы Водный режим почвы
  8. ХИМИЧЕСКИИ СОСТАВ КУТИКУЛЫ КАК РЕГУЛЯТОРА ГАЗОВОГО ОБМЕНА ПЛОДОВ
  9. Влияние высотных факторов и принципы формирования искусственной газовой среды в кабине
  10. Геохимическое влияние газовых потоков на почвенный покров газоносных территорий
  11. МОДЕЛЬ ДЛЯ ОЦЕНКИ ЭМИССИЙ ПАРНИКОВЫХ ГАЗОВ НА ТОРФЯНИКАХ Н. В. Лещинская, T. Д. Ярмошук, A. Тиле, M. Mинке, В. А. Рыжиков
  12. Почвы рекультивируемых территорий
  13. ОБРАБОТКА ПОЧВЫ
  14. СТРУКТУРА ПОЧВЫ
  15. Индикаторы кислотности почвы
  16. СПЕЛОСТЬ ПОЧВЫ
  17. АГРОГЕННЫЕ АККУМУЛЯТИВНЫЕ ПОЧВЫ(СКОНСТРУИРОВАННЫЕ)