<<
>>

Последующие этапы реализации наследственной информации

Хотя проблема дифференциальной активности генов является сейчас центральной в биологии развития, ее решение еще не означало бы, что познаны все механизмы развития. Активность специфических генов и синтез соответствующих иРНК являются только первым этапом реализации генетической информации, за которым следует синтез белка (см.

главу 23).

Еще недавно считали, что синтез белка однозначно и целиком определяется появлением соответствующих матриц иРНК. Однако выяснилось, что это не так: для многих случаев было убедительно показано, что синтез белка при дифференцировке происходит иногда через значительный промежуток времени после синтеза РНК. Это особенно хорошо видно, когда синтез РНК прекращается — в таких, например, случаях, как эритропоэз, при котором синтез гемоглобина идет после завершения синтеза РНК и инактивации ядра. В самом раннем развитии, как уже говорилось, синтезы РНК отсутствуют, в то время как синтез белка достаточно активен. Наконец, такая сложная дифференцировка, как сперматогенез, также происходит при полной неактивности ядер, но при постоянном синтезе белков. Существенно, что в этом случае синтез белка не только закономерно распределен во времени и изменяется количественно, но, по-видимому, может изменяться и качественно, т. е. синтез одних белков сменяется синтезом других. Так, показано, что при сперматогенезе в конце дифференцировки начинается и завершается синтез специфических богатых аргинином гистонов, входящих в состав дезоксирибонуклеопротеида (ДНП) головки спермия.

Таким образом, установлено, что после образования иРНК на спе цифических генах синтез белка (трансляция) также регулируется в ходо дифференцировки по особой программе. Недавно был найден один из але- ментов механизма такой регуляции. Молекулы иРНК после синтеза, вероятно еще в ядре, образуют комплекс с особым белком и далее длительно» время могут находиться в таком связанном состоянии, прежде чем войдут в состав полирибосом (или полисом, как их принято теперь именовать), на которых синтезируется белок.

В цитоплазме эти комплексы были названы А. С. Спириным (1966) информосомами (см. также главу 23).

О характере их функции пока ничего не известно; очевидно, однако, что их постепенное включение в процесс синтеза белка должно регулироваться особым образом. Совершенно неясными остаются также механизмы, определяющие последовательность синтеза разных белков, так как для этого необходимо, чтобы разные информосомы как-то отличались друг от друга и вовлекались в; процесс трансляции в определенном порядке.

Синтез специфических белков еще не означает завершения процесса дифференцировки. Появление соответствующих белков-ферментов определяет лишь метаболические свойства клеток. Но дифференцированные клетки характеризуются также рядом морфологических свойств — формой, размерами, характером внутриклеточных структур, взаимодействием с окружающими клетками. Образование ряда внутриклеточных структур, таких, как миофибриллы, коллагеновые волокна и т. д., может быть сведено к синтезу соответствующих белков, хотя и в этих случаях образование надмолекулярной организации этих структур требует специального объяснения.

Сложнее образование таких клеточных органелл, как рибосомы и клеточные мембраны (см. также главы 10 и 23). В некоторых случаях известно, например, что формирование этих надмолекулярных структур происходит путем самосборки. Такие процессы описаны для рибосом (А. С. Спирин, JI. П. Гаврилова, 1968) ^ некоторых элементов митохондриальных структур и клеточных мембран. Это означает, что белки, входящие в состав этих субклеточных структур, обладают не только способностью нести свою функциональную нагрузку, но и способностью к самосборке. Однако у некоторых органелл, например, митохондрий, самосборка не обнаружена. Наоборот, известно, что эти структуры делятся и растут. Эта способность митохондрий хорошо увязывается с их частичной автономностью — способностью к синтезу ДНК, РНК и белка. Однако механизм их удвоения и способы увеличения размеров до сих пор являются нерешенной проблемой.

Особенно существенным для понимания морфогенеза представляются межклеточные взаимодействия, определяющие взаимное расположение клеток и их закономерные перемещения в ходе развития. Поведение этих клеток может быть объяснено через свойства их клеточных мембран. Изменение состава белков, входящих в состав этих мембран, может рассматриваться как путь генетического контроля над морфогенезом. Имеются довольно убедительные данные о том, что именно свойства клеточных мембран определяют межклеточные взаимоотношения. Что же касается того, как белки модифицируют клеточную мембрану и каковы механизмы межклеточных контактов, то эти вопросы остаются еще совершенно открытыми. *

* *

Обозревая будущее современной биологии развития, следует указать основные направления исследований на ближайшие годы. Первым направлением явится, безусловно, изучение механизмов регуляции функции ге нов (природа факторов дифференцировки, активирующих гены; механизмы непосредственного действия на хроматин; структура межгенных связей в ядре; природа генетической компетенции; системы, поддерживающие стабильность дифференцировки в ряду поколений клеток). Именно от этого направления можно ожидать наибольших результатов, так как в его русле работают сейчас десятки лабораторий во многих странах мира.

Вторым актуальным направлением является исследование механизмов клеточной дифференцировки на посттрансляционном уровне, т. е. процессов, посредством которых вновь синтезированные белки определяют форму, функцию и поведение клеток. Можно думать, что то внимание, которое уделяется таким образованиям, как микротрубочки и мембраны, обеспечит успех и этого направления.

Третьей и, вероятно, наиболее трудной проблемой биологии развития является проблема становления формы отдельных органов и всего организма. Достижения здесь пока еще очень невелики и недостаточно ясны те пути, на которых можно ожидать решения этой проблемы.

<< | >>
Источник: И. Е. АМЛИНСКИЙ, Л. Я. БЛЯХЕР. ИСТОРИЯ БИОЛОГИИ С НАЧАЛА ХХ ВЕКА ДО НАШИХ ДНЕЙ. 1975

Еще по теме Последующие этапы реализации наследственной информации:

  1. 3.4.3. Использование генетической информации в процессах жизнедеятельности 3.4.3.1. Роль РНК в реализации наследственной информации
  2. 6.2. РЕАЛИЗАЦИЯ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ В ИНДИВИДУАЛЬНОМ РАЗВИТИИ. МУЛЬТИГЕННЫЕ СЕМЕЙСТВА
  3. ГЛАВА 6 ОНТОГЕНЕЗ КАК ПРОЦЕСС РЕАЛИЗАЦИИ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ
  4. Реализация генетической информации
  5. Задержка последа
  6. 3.4.2 Свойства ДНК как вещества наследственности и изменчивости 3.4.2.1. Самовоспроизведение наследственного материала. Репликация ДНК
  7. ПОЕДАНИЕ ПОСЛЕДА
  8. ПОЕДАНИЕ ПОСЛЕДА
  9. ЗАДЕРЖАНИЕ ПОСЛЕДА
  10. Реализация потенциала гибридов кукурузы в зависимости от сроков посева
  11. 2.3.3. Поток информации
  12. Последующее развитие дарвинизма и его влияние на биологию
  13. 3.4.3.2. Особенности организации и экспрессии генетической информации у про- и эукариот
  14. 7.1. ЭТАПЫ. ПЕРИОДЫ И СТАДИИ ОНТОГЕНЕЗА
  15. 5.5. ПУТИ ПРИОБРЕТЕНИЯ ОРГАНИЗМАМИ БИОЛОГИЧЕСКОЙ ИНФОРМАЦИИ
  16. ПРИЛОЖЕНИЕ Г Источники информации по пермакультуре
  17. Передача информации о корме
  18. Предпосылки и этапы возникновения жизни
  19. 1.1. ЭТАПЫ РАЗВИТИЯ БИОЛОГИИ
  20. Основные этапы эволюции биосферы в целом