ОБРАЗОВАНИЕ И ОКИСЛЕНИЕ МОЛЕКУЛЯРНОГО ВОДОРОДА
В обычных условиях водород вступает в реакции лишь с немногими элементами, но при нагревании дает радикал Н+ и взаимодействует со многими элементами. Соединяясь с кислородом, он образует воду и при этом выделяется очень много энергии, в связи с чем реакция получила название «гремучего газа», так как она протекает со взрывом:
Реакция с азотом проходит с большими затратами энергии. Она возможна при высокой температуре, давлении и в присутствии катализаторов:
Этот процесс лежит в основе получения азотных удобрений по методу Габера-Боша.
Образование метана идет без катализаторов при высокой температуре:
В биохимических процессах трансгидрирования водород участвует в реакции переноса электронов и протонов.
Круговорот молекулярного водорода в биосфере включает его образование и окисление в результате биогенных и абиогенных — геохимических и промышленных процессов.
Главный источник биогенного водорода — деятельность микроорганизмов в почве. Водород образуется также в рубце жвачных и пищеварительном тракте других животных, включая человека. Учесть количество водорода, выделяемого почвенными микроорганизмами, довольно сложно из-за того, что его образование в природных ассоциациях сопряжено с параллельно идущими процессами потребления (рис.
76).Рис. 76. Образование и потребление водорода
Микробиологические процессы образования водорода. Один из первых описанных природных процессов микробного образования водорода — сбраживание целлюлозы в анаэробных условиях смешанными культурами бактерий. Первичные анаэробы, осуществляющие брожение, выступают в роли главных генераторов водорода в анаэробной зоне. К облигатным вторичным анаэробам, образующим водород, относятся сульфатредуцирующие бактерии, к факультативным — энтеробактерии. В анаэробных условиях водород образуют некоторые простейшие — симбионты животных, обитающие в их кишечном тракте. В аэробной зоне водород продуцируют азотфиксаторы, метанотрофы и фототроф- ные организмы — водоросли, цианобактерии, фотосинтезирующие пурпурные и зеленые бактерии.
Механизмы образования водорода у многочисленных групп микроорганизмов, участвующих в этом процессе, различны. У большинства хемотрофных бактерий образование водорода сопряжено с процессами получения энергии. Конечным акцептором электронов выступают протоны Н\ что определяется наличием специфического фермента — гидрогеназы, катализирующего реакцию 2Н+ + 2е -» Н2; переносчик электронов, с которым взаимодействует гидрогеназа — железосодержащий фермент ферре- доксин. У азотфиксаторов в образовании водорода принимает участие Fe-Мо-содержащий фермент нитрогеназа, который катализирует восстановление не только азота, но и протонов ЬГ. Этот процесс идет с затратой АТФ. Нитрогеназа катализирует
образование водорода и у фототрофных азотфиксаторов. У водорослей и цианобактерий выделение водорода связано с фотолизом воды.
Таким образом, условия, способствующие активному образованию водорода в почве, сводятся к наличию в анаэробной зоне сбраживаемых органических субстратов, а в аэробной зоне — к активации фотосинтеза.
Потребление водорода. Считают, что потребление молекулярного водорода в почвах на Земле составляет 108 т в год.
Образующийся в почве водород активно поглощается «бактериальным фильтром», поэтому в природной обстановке его трудно обнаружить, хотя в чистых культурах вьщеление водорода легко регистрируется. Потребление водорода микроорганизмами происходит наиболее активно в аэробной зоне, хотя частично он потребляется и вторичными анаэробами. Водород используют разными путями и с участием разных акцепторов электрона микроорганизмы многих таксономических, трофических и физиологических групп.Водородными называют большую и разнородную в таксономическом отношении группу бактерий, которые в аэробных условиях окисляют водород и способны к автотрофному росту. Почти все они факультативные автотрофы. Многие ассимилируют N3, а в анаэробных условиях способны к окислению водорода кислородом нитратов или нитритов, восстанавливая их до N2.
К водородным бактериям, которые могут использовать водород и строить свое тело из С02, относят десятки обычных родов бактерий, которые могут развиваться и за счет органических веществ. Это грамотрицательные Hydrogenobacter, Hydrogenophaga, Azospirillum, Alcaligenes, Aquaspirillum, Rhizobium, почкующиеся Blastobacter, Hyphomicrobium, а также грамположительные кори- неподобные бактерии родов Arthrobacter, Nocardia, Mycobacterium, Streptomyces и некоторые виды споровых рода Bacillus. Таким образом, хемолитоавтотрофия на основе окисления водорода — более распространенное среди бактерий явление, чем при окислении других неорганических субстратов. Они осуществляют реакцию Н2 + 0,5 02 = Н20. У них имеется цикл Кальвина или они ведут превращения как метаногены.
В клубеньках бобовых растений при активности бактероидов наблюдается процесс рециклизации водорода. Образуемый нит- рогеназой Н2 частично окисляется кислородом и синтезирует АТФ. В то же время водород выступает как донор электронов для нит- рогеназы и обеспечивает ассимиляцию С02 (рис. 77). При этом потери водорода составляют всего 4 вместо 25% по расчету. Это
Рис.
77. Рециклизация водорода у клубеньковых бактерийспособствует высокой эффективности использования клубеньковыми бактериями продуктов фотосинтеза растений (использования энергии).
Водородные бактерии перспективны как продуценты белка. Их используют также для биорегенерации воздуха (удаления избытка С02) в замкнутых системах, где водород можно получать электролизом воды. Водородные бактерии служат источником для получения ферментов, особенно гидрогеназ. Гидрогеназы ведут процесс в двух направлениях: Н2 2Н+ + 2е (фермент содержит никель).
В почве водородные бактерии, по-видимому, создают микро- консорции, в которых они выступают автотрофным центром. Их спутниками-консументами могут быть простейшие, паразитические бактерии-бделловибрионы, микоплазмы, миксобактерии со способностью лизировать клетки других бактерий.
На основе межвидового переноса водорода за счет его образования и потребления в природных экосистемах создаются прочные микробные ассоциации, члены которых иногда трудно получить в виде чистых культур. Таковы многие ассоциации с участием метаногенных бактерий, целлюлозосбраживаюших анаэробов, азотфиксаторов. Деятельность такого рода ассоциаций обеспечивает активное протекание сложных многоступенчатых процессов превращения полимерных субстратов в почве, таких как разложение целлюлозы, пектина, ароматических соединений. Водород в этих процессах выступает как ключевой метаболит, связывающий в одну систему работу многих микроорганизмов аэробной и анаэробной зон.
Еще по теме ОБРАЗОВАНИЕ И ОКИСЛЕНИЕ МОЛЕКУЛЯРНОГО ВОДОРОДА:
- ОБРАЗОВАНИЕ И ОКИСЛЕНИЕ ВОДОРОДА
- Образование льда Вертикальная циркуляция и образование льда в пресной воде
- ВОДОРОД И КИСЛОРОД (вода)
- МЕТОДЫ ОПРЕДЕЛЕНИЯ ПРОДУКТОВ ПЕРЕКИСНОГО (СВОБОДНОРАДИКАЛЬНОГО) ОКИСЛЕНИЯ ЛИПИДОВ
- КОНЦЕНТРАЦИЯ ИОНОВ ВОДОРОДА (pH)
- ВЛИЯНИЕ АЗОТНЫХ СОЕДИНЕНИЙ НА ОКИСЛЕНИЕ МЕТАНА ВВЕРХОВОМ БОЛОТЕ, ТВЕРСКАЯ ОБЛАСТЬ
- Молекулярная биофизика
- Глава 23. МОЛЕКУЛЯРНАЯ БИОЛОГИЯ
- 4. Молекулярный ламаркизм и иммунология
- 8.5.2. Проявление старения на молекулярном, субклеточном и клеточном уровнях
- Связь классической и молекулярной генетики
- Глава 24. МОЛЕКУЛЯРНАЯ ГЕНЕТИКА
- 4.1. МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ НАСЛЕДСТВЕННОСТИ И ИЗМЕНЧИВОСТИ У ЧЕЛОВЕКА