Физиология нервов и мышц
Изучение проблем нервно-мышечной физиологии связано прежде всего с именем Н. Е. Введенского — создателя концепции парабиоза (1901).
Состояние парабиоза, наблюдавшееся Введенским в экспериментах на нервном стволе, характеризуется тремя последовательно проходящими стадиями — провизорной, парадоксальной и тормозящей.
Каждая из них отличается определенным изменением реакции нерва на приложенный к нему раздражитель. Состояние парабиоза может быть вызвано любым достаточно сильным и длительно действующим раздражителем. В парабио- тическом очаге возникает локальное, стационарное и нераспространяю- щееся возбуждение, переходящее в свою противоположность — торможение. Состояние парабиоза является обратимым, если раздражитель, его вызвавший, действует непродолжительное время. В противном случае наступает смерть. Таким образом, парабиоз представляет собой состояние, находящееся «около жизни» и могущее перейти в смерть.Концепция Введенского о парабиозе основывалась на представлениях 0
стационарном нераспространяющемся возбуждении и о единой природе возбуждения и торможенияПервое из этих представлений получило позже электрофизиологическое подтверждение. Второе представление Введенского оказалось верным лишь в частном случае. Электрофизиоло- гические исследования показали, что, как правило, торможение в нервных центрах сопровождается электрическими изменениями, противоположными возбуждению (гиперполяризацией клеточной мембраны). Лишь в отдельных случаях торможение может возникать в результате деполяризации, т. е. по схеме Введенского.
В 1908—1914 гг. свойства нервных волокон и проведение нервного импульса интенсивно изучал кембриджский физиолог К. Люкас. Он считал, что возбуждение нерва или мышцы происходит в соответствии с открытым Г. П. Боудичем законом «все или ничего». В середине 30-х годов Г. Като доказал это экспериментально. Для развития физиологии нервов ,и мышц большое значение имело усовершенствование в 20-х годах методики электрофизиологических исследований с использованием ламповых усилителей и электроннолучевой трубки.
Немало усилий затратили физиологи на разработку способов определения возбудимости и выяснения влияния на нее различных факторов. На основе исследований Л. Гоорвега (1892) и Г. Вейсса (1901), нашедших зависимость между напряжением или силой тока и временем его действия, Л. Лэпик (1926) разработал учение о хронаксии. Хронаксия, характеризующая скорость возникновения возбуждения при раздражении, оказалась весьма чувствительным показателем состояния возбудимой ткани, и хронаксиметрия заняла определенное место среди клинических методов исследования. В 1936 г. А. В. Хилл и Д. Соландт ввели измерение еще одного показателя состояния возбудимых тканей — аккомодации, которую определяют по минимальной крутизне раздражающего тока, способного вызвать возбуждение (термин «аккомодация» был предложен в 1908 г.
В. Нернстом).
Событием в физиологии нервных волокон было открытие в 1926 г. -А. В. Хиллом, А. Доунингом и Р. Джерардом теплообразования в нерве при возбуждении. Стало ясным, что возбуждение нервных волокон, как и любой другой акт деятельности организма, сопровождается усилением обмена веществ. С результатами термометрических измерений Хилла перекликаются исследования обмена веществ в нервах. В 20-х годах было обнаружено увеличение поглощения кислорода нервом при его электрическом раздражении, а в 1934 г. Р. Джерард и Г. Хартлайн установили, что при прохождении по зрительному нерву моллюска импульсов от освещаемого глаза дыхание нервных волокон возрастает на 40%- В то же время было -выяснено, что возбуждение нервов сопровождается увеличением содержания ацетилхолина или симпатина и освобождением аммиака.
Результаты термометрических и биохимических исследований свидетельствовали о том, что нервный импульс нельзя считать физическим процессом. Новое представление о нервном импульсе в конце 30-х годов •сформулировал А. А. Ухтомский, сравнив возбуждение с кометой, ядром которой является электрический процесс, сопровождаемый «метаболическим хвостом».
Обширные и разносторонние материалы, собранные при изучении физиологии нервных волокон, настойчиво ставили вопрос о природе процесса возбуждения и о происхождении биоэлектрических потенциалов. На рубеже XIX и XX столетий были предприняты попытки физико-химического объяснения происхождения биоэлектрических потенциалов и механизма раздражения и возбуждения нервов и мышц.
Сложившиеся в то время представления основывались на достижениях физической химии, в частности на незадолго до того созданной С. Аррениусом (Нобелевская премия, 1903) теории электролитической диссоциации (см. главу 12).Пионером в создании диффузионной физико-химической теории происхождения биоэлектрических явлений был В. Ю. Чаговец (1896 и позднее). Согласно этой теории, ток покоя или действия является результатом образования угольной или фосфорной кислоты в поврежденном или возбужденном участке мышцы или нерва и диффузии водородных ионов. Близкие к теории Чаговца взгляды в те же годы высказывал Ж. Лёб.
В 1902 г. Ю. Бернштейн сформулировал первую мембранную теорию происхождения биоэлектрических явлений, согласно которой нервные и мышечные клетки и нервные волокна покрыты мембраной, избирательно проницаемой для катионов и непроницаемой для анионов. Вследствие этого мембрана всегда находится в поляризованном состоянии; между ее внутренней и наружной поверхностями имеется разность потенциалов. При повреждении или возбуждении мембрана становится проницаемой и для анионов и деполяризуется. Так объяснялось то, что возбужденный или поврежденный участок оказывается электроотрицательным по отношению к покоящемуся или неповрежденному. Вокруг теории Бернштейна долгие годы велись споры, пока некоторые ее положения не подвергли пересмотру Дж. Экклс, А. Ходжкин и Э. Хаксли, обосновавшие в конце 50-х годов новую теорию (совместная Нобелевская премия, 1963), которая пользуется сейчас широким признанием.
Известный физико-химик В. Нернст (1899, 1908) выступил с теорией раздражения возбудимых тканей электрическим током. Сущность физиологического действия электрического тока он видел в изменении концентрации ионов в живой ткани под электродами. Нернст предложил формулы раздражающего действия постоянного и переменного тока. В 1906 г. Чаговец сформулировал конденсаторную теорию возбуждения живой ткани при действии электрического тока и дал ее физическое и математическое обоснование. Эта теория пользуется до сих пор наибольшим признанием.
В первой четверти XX в. изучение действия ионов было одной центральных проблем физико-химической биологии и физиологии. Оно шло в значительной степени под влиянием идей физической химии (см. также главу 12).
Наряду с проблемами возбуждения в XX в. активно разрабатывалась проблема мышечного сокращения, в особенности вопросы обмена веществ в мышце при работе. С изучением химической динамики сокращения связано несколько драматических эпизодов коренной ломки сложившихся в науке представлений.
В 1907 г. У. М. Флетчер и Ф. Г. Гопкинс установили, что при сокращении мышцы в ней происходит образование молочной кислоты. Этот факт явился отправным пунктом миотермических исследований А. В. Хилла и биохимических работ О. Мейергофа, которые пришли к заключению, что «основным фактором в механизме мышцы является молочная кислота...» '. Они полагали, что молочная кислота вступает в реакцию с мышечными белками и, изменяя их поверхностное натяжение, приводит к увеличению эластического напряжения мышцы и изменению ее механических свойств. Теория Хилла—Мейергофа (Нобелевская премия, 1922) продержалась всего несколько лет. В 1930 г. молодой биохимик Э. Лундс- гаард нанес ей сокрушительный удар, обнаружив, что мышца, отравленная монойодуксусной кислотой, способна некоторое время сокращаться, хотя в ней и не происходит образования молочной кислоты. Этот факт, по выражению Хилла, произвел «революцию в мышечной физиологии». Отравленная монойодуксусной кислотой мышца может сокращаться лишь до тех пор, пока в ней имеется креатинфосфат, или фосфаген — соединение, открытое в 1927 г. В течение нескольких лет расщепление креатин- фосфата считалось начальной реакцией, запускающей химическую динамику мышечного сокращения и поставляющей необходимую мышце энергию, пока открытая К. Ломаном (1929) аденозинтрифосфорная кислота не была признана универсальным источником энергии в организме.
Еще по теме Физиология нервов и мышц:
- Болезни мышц
- Болезни мышц
- БОЛЕЗНИ МЫШЦ МИОЗИТЫ И МИОПАТИТЫ (Myositis и Myopatosis)
- НОВОКАИНОВАЯ БЛОКАДА НЕРВОВ ВЫМЕНИ У КОРОВ
- НОВОКАИНОВАЯ БЛОКАДА ГРУДНЫХ ВНУТРЕННОСТНЫХ НЕРВОВ ПО М. Ш. ШАКУРОВУ
- Внутриствольная структура нервов
- Сыромятников Михаил Юрьевич. БИОЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ МИТОХОНДРИИЛЕТАТЕЛЬНЫХ МЫШЦ ШМЕЛЕЙ (BOMBUS TERRESTRIS L.), 2014
- НОВОКАИНОВАЯ БЛОКАДА МЕЖПАЛЬЦЕВЫХ НЕРВОВ У ПАРНОКОПЫТНЫХ ЖИВОТНЫХ
- НОВОКАИНОВАЯ БЛОКАДА НЕРВОВ ТАЗА У КОРОВ ПО Г. С. ФАТЕЕВУ
- НАДПЛЕВРАЛЬНАЯ НОВОКАИНОВАЯ БЛОКАДА ЧРЕВНЫХ НЕРВОВ ПО В. В. МОСИНУ
- Сравнительная и эволюционная физиология j
- Глава 5. ФИЗИОЛОГИЯ РАСТЕНИЙ
- Физиология вегетативной нервной системы
- Под ред. Е. М. Крепса.. Физиология животных. Приспособление и среда, Книга I, 1982
- Под ред. Е. М. Крепса. Физиология животных: Приспособление и среда, Книга 2, 1982
- Физиология человека