Аксиома вторая


И снова немного истории. В 1927 роду на III Всесоюзном съезде зоологов, анатомов и гистологов в Ленинграде наш блестящий биолог Николай Константинович Кольцов сделал доклад, в котором впервые была четко сформулирована вторая аксиома биологии.
Принцип Кольцова до сих пор остается незыблемым, несмотря на то, что наши представления о природе наследственных молекул совершенно изменились.
В начале доклада Кольцов припомнил давнее событие – Московский съезд естествоиспытателей и врачей, состоявшийся в 1893 году. Два тогдашних выступления особенно врезались в его память, тогда молодого исследователя, изучавшего анатомию лягушки.
Профессор М.А.Мензбир рассказал о нашумевших идеях Августа Вейсмана, разделившего организм на наследственную плазму и сому (аналоги сегодняшних генотипа и фенотипа). Из теории Вейсмана следовало, что генотип располагается в клеточном ядре и передается от поколения в поколение яйцеклетками и спермиями.
И на том же съезде химик А.А.Колли путем простейших математических выкладок, основываясь на далеко еще и во многом неверных тогдашних представлениях о природе белков, показал, что в головке спермия может уместиться очень мало белковых молекул: несколько десятков, то есть примерно столько же, что и хромосом.
Странным образом никто тогда, кроме Кольцова, не сопоставил оба этих выступления. Да и сам Николай Константинович вынес свои идеи на всеобщее обсуждение только после более чем тридцатилетних размышлений, уже после того, как родилась на свет генетика Моргана и белковая химия шагнула далеко вперед.
Вывод его был прост хромосома – это гигантская молекула. Впоследствии, в 1935 году он назвал хромосомы «наследственными молекулами».
Согласно Кольцову в хромосоме в линейной последовательности располагаются белковые молекулы – гены. Каждый ген – цепочка аминокислотных остатков, соединенных пептидными связями.
Рис. 12. Таким представлял процесс деления хромосомы Н.К.Кольцов, гениально предугадавший необходимость для жизни матричного синтеза.

Напомним, кстати, читателям, что такое аминокислота. Этого названия заслуживает любое соединение, содержащее одновременно аминогруппу – NH2    и радикал органических кислот – COOH . Пептидная связь возникает между этими группировками: при этом отщепляется молекула воды. Белки состоят из сотен и тысяч аминокислотных остатков, соединенных пептидными связями. Кольцов предположил, что все наследуемые свойства организмов закодированы в хромосомах порядком чередования разнообразных аминокислотных остатков.
Но отсюда следовало, что заново возникать подобные молекулы не могут. Слишком мала вероятность того, что аминокислоты сами по себе, без какого#x2011;нибудь упорядочивающего фактора соберутся в нужную последовательность. А ведь она воспроизводится в каждом поколении и вероятность ошибки ничтожна. Кольцов приводил пример с цепочкой всего из 17 аминокислот, возможно существование триллиона вариантов таких цепочек, различающихся чередованием остатков! Но такая цепочка (гептакайдекапептид) гораздо проще большинства природных белков.
Теперь, когда последовательность аминокислот известна для многих десятков, если не сотен, белков, можно привести еще более убедительный пример, как это делает Манфред Эйген[4]. Цитохром С   не самый большой белок, в нем лишь около сотни аминокислотных остатков. Эйген подсчитал, что число вариантов такой последовательности около 10130(единица со ста тридцатью нулями). Трудно представить столь огромную величину. Если бы вся Вселенная (все планеты, звезды и галактики) состояла из цитохрома С , в ней могло уместиться только около 1074молекул! Это ли не подтверждение мысли Кольцова!
И Кольцов делает следующий вывод:

«Наследственные молекулы синтезируются матричным путем. В качестве матрицы, на которой строится ген будущего поколения, используется ген предыдущего поколения».

Это и есть аксиома биологии № 2. Кольцов продолжил цепь рассуждений биологов предыдущих веков. Если Франческо Реди в XVI веке сформулировал принцип Omne vivum ex vivo   (все живое из живого), опровергающий возможность самозарождения жизни, то ХIХ век добавил принципы Omnis cellula ex cellula   (каждая клетка из клетки) и Omnis nucleus ex nucleus   (каждое ядро из ядра). И Кольцов завершает: Omnis molecula ex molecula   – каждая молекула (имеется в виду «наследственная молекула») из молекулы.
Принцип матричного копирования был известен людям тысячи лет. Еще обитатели Шумера имели цилиндрические печати из твердого камня с вырезанными на них именами владельцев и различными рисунками. Прокатив такой цилиндрик по мягкой глине, древний шумер получал отчетливый оттиск рисунка и печати. На этом же приеме основана любая система точного и массового копирования сложных структур с закодированной в них информацией – будь то книгопечатание, чеканка монет или же изготовление фотооттисков с негатива. Представляется странным, что идею Кольцова о матричном синтезе генов поддержали в 20–30#x2011;е годы лишь немногие.
Рис. 13. Принцип матричного копирования был известен уже тысячи лет назад древним шумерам. Прокатив валик#x2011;печать по мягкой глине, состоятельный шумер ставил свою печать на документе. Уже тогда четыре с половиной тысячи лет назад люди додумались, что печать должна быть комплементарна отпечатку – выпуклостям соответствуют впадины, вместо нормальных клинописных знаков даны их зеркальные отображения. Но природа «изобрела» матричное копирование более чем за три миллиарда лет раньше, оно было первым завоеванием жизни и ее необходимым условием.

Но она была уже пущена в научный обиход. Ученик Н.К.Кольцова Н.В.Тимофеев#x2011;Ресовский познакомил с ней физика М.Дельбрюка. Э.Шредингер в своей книге «Что такое жизнь с точки зрения физика?» идею матричного синтеза по ошибке приписал Дельбрюку (ошибка через год была исправлена генетиком Дж.Б.С.Холдейном в рецензии на книгу Шредингера в журнале «Нейчер»).
Возможно, Шредингер считал эту идею уже широко распространенной, чуть ли не общепринятой в среде биологов и сослался на последние работы в этом направлении, как это часто водится. Ошибка простительная, тем более что Н.В.Тимофеев#x2011;Ресовский и М.Дельбрюк иногда работали вместе.
А в 1953 году, через тринадцать лет после смерти Н.К.Кольцова в том же журнале появилась краткая статья физика Ф.Крика и ученика Дельбрюка – генетика Дж.Уотсона.
Крик и Уотсон расшифровали структуру «наследственной молекулы» и показали, что в ней самой заложена способность к матричному копированию. Но «веществом наследственности» оказался не белок, а дезоксирибонуклеиновая кислота – всем известная ныне двойная спираль ДНК.
Почему же ДНК? Почему же Кольцов, гениально предугадав необходимость матричного синтеза гена, ошибся в выборе материала для него? Все дело заключалось в несовершенстве тогдашних микроскопических методик. Уже была известна отличная реакция на нуклеиновые кислоты – реакция Фёльгена, окрашивавшая ядра клеток и хромосомы в ядрах в малиново#x2011;красный цвет.
Однако когда ДНК между делениями клеток равномерно распространялась по ядру, окраска была слабой, почти незаметной. Так мы можем видеть катушку ниток и не заметить нитку той же длины размотанную по поверхности большого ковра. Поэтому большинство исследователей полагало, что ДНК из ядра в промежутке между делениями вообще исчезает. А ведь согласно идее матричного синтеза ген не может возникать заново.
Кстати, может ли последовательность аминокислот размножаться матричным путем? Как удалось установить в природе – нет. И все же… Кольцов оказался не так уж и не прав.
Вот как он представлял процесс «размножения» молекулы: «…всякая (конечно, сложная органическая) молекула возникает из окружающего раствора только при наличии уже готовой молекулы; причем соответствующие радикалы помещаются… на те пункты имеющейся налицо и служащей затравкой молекулы, где лежат такие же радикалы». Такой процесс удалось воспроизвести в опыте.
Есть такая аминокислота – глутаминовая. Именно она придает специфический привкус сухим пакетным супам (туда добавляют ее натриевую соль). Она может существовать, как всякое органическое соединение с асимметричным атомом углерода, в двух формах, условно названных «правой» и «левой». Природные белки содержат только левые аминокислоты.
Как и любую аминокислоту, глутаминовую можно полимеризовать. При этом возникает длинная монотонная цепочка Глу–Глу–Глу–Глу – полиглутаминовая кислота, так же напоминающая природный белок, как звон будильника – музыку.
Растворим полиглутаминовую кислоту (из левых форм) в водной щелочи при 100° и добавим в реакционный сосуд смесь правой и левой формы глутаминовой кислоты. При охлаждении раствора происходит процесс, удивительно напоминающий тот, который описал Кольцов. Молекулы глутаминовой кислоты присоединяются к звеньям полимера, полиглутаминовая кислота служит матрицей. Под действием облучения между этими молекулами возникают пептидные связи – сшивки. Так образуется новая молекула полиглутаминовой кислоты, построенная на матрице старой. Чем это не размножение молекул по Кольцову?
К тому же матрица выбирает материал для постройки копии – только левую форму. В принципе возможен выбор нужной молекулы и из смеси разных аминокислот. Казалось бы, таким способом может размножаться и настоящий белок.
Однако дело обстоит не так просто. Если мы повысим концентрацию аминокислоты или же быстрее будем охлаждать раствор, избирательность синтеза сразу исчезает. Точной копии полимерной молекулы таким способом получит нельзя.
Причина этого – природа связей, которыми одиночные молекулы глутаминовой кислоты присоединяются к матричному полимеру. Такие связи называют водородными. Ион водорода наиболее электроположителен, поэтому он охотно образует связи с электроотрицательными партнерами (вспомните хотя бы ион аммония NH4+ ). Не будь водородных связей между молекулами воды, она кипе бы при гораздо более низкой температуре, лед бы тонул в воде, и уже поэтому жизнь на Земле была бы невозможной.
Но этого мало. Эффект водородных связей имеет для жизни гораздо большее значение. Именно они определяют так называемую вторичную структуру молекул белков и нуклеиновых кислот.
В белках водородные связи образуются между кислородом в группировке CO–NH   и водородом в амидной группе NH . Остатки любых аминокислот могут реагировать с любыми же, водородные связи в белках неспецифичны. Именно поэтому матричный синтез полиглутаминовой кислоты теряет специфичность, как только мы пытаемся его ускорить. А непреложное условие точного матричного копирования – точное спаривание молекул.
Белки – плохие матрицы, и поэтому они не могут размножаться сами.
А нуклеиновые кислоты? Вспомним их строение. Это, как и белки, длинные молекулы полимеров. Но в отличие от белков звенья полимера – не аминокислоты, а нуклеотиды –сахара#x2011;пентозы, к которым присоединены азотистые основания – гуанин, аденин, цитозин и тимин (в РНК тимин заменяется урацилом). Связываются звенья нуклеотидов фосфодиэфирными связями остатка фосфорной кислоты H3PO4 .
Полипептидные цепи белков могут соединяться попарно водородными связями – это так называемая бета#x2011;структура белка. Но, как уже упоминалось, эти связи неспецифичны. Иное дело нуклеиновые кислоты. Здесь термодинамически выгоднее образование пар аденин – тимин (или аденин – урацил) и гуанин – цитозин. Эти пары называют каноническими. Все другие в обычных условиях неустойчивы. Поэтому в двойной спирали ДНК против гуанина в одной цепи всегда стоит цитозин в другой, а против аденина – тимин. И когда на одиночной цепи, как на матрице, строится новая, точность синтеза оказывается удовлетворительной для передачи генетической информации из поколения в поколение.
Рис 14. Почему матрицами жизни стали нуклеиновые кислоты? Потому что пары оснований А – Т (и А – У для комплексов ДНК – РНК и РНК – РНК) и Г – Ц наиболее термодинамически стабильны. Они показаны наверху, расстояние между основаниями дано в нанометрах, водородные связи показаны пунктиром. Все другие пары оснований (Т – Т. Ц – Ц, А – А, Г – Г, Т – Г), показанные на нижней часта рисунка, как минимум в десять раз менее прочны, чем пара А – Т и А – У. А пара Г – Ц самая стабильная из всех. Поэтому в точности спаривания оснований в ДНК и отсюда в точности матричного синтеза нет ничего удивительного или сверхъестественного. Это чистая термодинамика.

Мы видим существенное отличие от схемы Кольцова: согласно ей подобное притягивается к подобному, глутаминовая кислота – к остатку глутаминовой же кислоты в нашем опыте. При матрицировании ДНК (и РНК вирусов) притягиваются противоположные основания, комплементарные, образующие наиболее устойчивые пары с минимумом свободной энергии. Цепи в двойной спирали можно уподобить негативу и позитиву. Напомним, кстати, что и типографский шрифт, и печати, и чеканы для монет тоже не идентичные копии отпечатков, а их зеркальные отражения.
Как и при формулировке первой аксиомы, подчеркнем: главное не материальный субстрат, а матричный принцип его синтеза . Да, в земных условиях белки оказались плохими матрицами, а нуклеиновые кислоты хорошими. Но из этого не следует, что на других планетах во Вселенной дело обстоит так же. Гены там могут состоять из других соединений (каких, нам пока неведомо), но размножаться они должны, как и на Земле, матричным путем. Иначе мы опять попадем между преформизмом и эпигенезом, так что такая категоричность вполне обоснована.
Но мы живем на Земле. Поэтому сейчас мы должны вспомнить, как генетическая информация кодируется в нуклеиновых кислотах и как она трансформируется в молекулы белков. Это нам пригодится в дальнейшем. Рассмотрим принципы генетического кода – языка жизни. Ибо, как сказал Козьма Прутков: «…не зная законов языка ирокезского, можешь ли ты делать такое суждение по сему предмету, которое не было бы необоснованно и глупо?» 
Источник: Борис Михайлович Медников. Аксиомы биологии. 1982

Еще по теме Аксиома вторая:

  1. Борис Михайлович Медников. Аксиомы биологии, 1982
  2. ГЛАВА ВТОРАЯ
  3. ЧАСТЬ ВТОРАЯ
  4. Вторая группа (изменение особенностей поведения)
  5. История формирования СТЭ, или «вторая дарвиновская революция»
  6. ГЛАВА ВТОРАЯ Движение сердца, наблюдаемое при вивисекции
  7. Вторая фаза метаболизма ксенобиотиков (реакции синтеза и конъюгации). 
  8. ГЛАВА ВТОРАЯ СИСТЕМА, БЕЗ КОТОРОЙ НАМ НЕ ЖИТЬ
  9. Глава вторая УЧАСТИЕ ПОЧВЕННЫХ МИКРООРГАНИЗМОВВ ПРЕВРАЩЕНИИ ВЕЩЕСТВ И ЭНЕРГИИВ БИОСФЕРЕ
  10. История вторая. «Странная» гипотеза, «странные» камни...
  11. Основные свойства живого
  12. Определение статики
  13. Онхоцеркозы лошадей
  14. Ранне - весенний период .
  15. Введение
  16. Изменчивость длины, толщины и густоты волос
  17. ЗАКОНЫ И ОБЪЯСНЕНИЯ