<<
>>

Проблема внутрихромосомной локализации генов

Тщательный анализ возникновения мутаций у дрозофилы позволил обнаружить большое число разнообразных наследственных изменений, причем выяснилось, что каждый ген может давать значительное число мутаций.

Например, были обнаружены мутанты с красными, белыми, пурпурными, эозиновыми, гранатовыми, цвета слоновой кости, рыжими, молочными, киноварными глазами. Подобной изменчивостью характеризуются и другие гены.

По мере обнаружения все новых и новых мутаций увеличивался объем сведений о локализации отдельных генов в той или иной хромосоме. Ключом для решения вопроса о расположении генов по длине хромосомы послужило изучение Морганом явлений нарушения сцепления генов в результате обмена участками между хромосомами (длиной от од- 1

У большинства птиц, насекомых и части растений определение пола происходит иным образом: мужской пол получается от сочетания двух Х-хромосом; женский ? пол характеризуется сочетанием X- и Y-хромосом.

ного до нескольких генов), названного нм кроссинговером (по-английски, перекрест).

Существенным этапом в изучении кроссинговера явилось установление того факта, что определенные гены перемещаются из хромосомы в хромосому с определенной специфичной для них частотой. Морган высказал предположение, что чем дальше друг от друга по длине хромосомы расположены гены, тем легче может произойти кроссинговер между ними, ибо для разделения близко лежащих генов необходимо, чтобы разрыв прошел между ними. Вероятность такого разрыва, очевидно, мала. А если это так, то процент особей, у которых осуществился кроссинговер, от' общего числа исследованных особей может служить мерой расстояния между генами в хромосоме. За выдающиеся работы в области генетики Морган был удостоен в 1933 г. Нобелевской премии.

В 1913 г. Стертевант составил первую карту половой Х-хромосомы дрозофилы, построенную на основании численных данных по сцеплению и кроссинговеру, наблюдаемых у шести сцепленных с полом генов.

К 1916 г. у дрозофилы уже была изучена локализация в хромосомах сотен генов, и они были картированы по всем четырем хромосомам. Метод составления генетических карт, разработанный на дрозофиле, был перенесен на растения (кукуруза, львиный зев) и животные (мыши).

Составление генетических карт — процедура весьма трудоемкая. Генные структуры хромосом поддаются легкой расшифровке у тех организмов, которые быстро размножаются. Последнее обстоятельство является основной причиной того, что самые подробные карты существуют для дрозофилы, ряда бактерий и бактериофагов, а наименее подробные для растений. Составление карт для долгоживущих организмов (животные, многолетние растения) — дело будущего.

Следует отметить, что чисто генетические методы определения локализации генов в хромосомах так или иначе давали лишь косвенные доказательства хромосомной теории наследственности и последнюю продолжали оспаривать некоторые генетики (например, Р. Гольдшмидт, 1917). Прямым доказательством этой теории послужили обнаруженные К. Бриджесом у дрозофилы явления нерасхождения половых хромосом (1913, 1916) и выпадения четвертой хромосомы (1921). В этих случаях генетические предсказания, основанные на скрещиваниях, подтвердились при изучении кариотипов под микроскопом.

Наконец, были получены прямые цитологические доказательства существования кроссинговера у дрозофилы. Еще в 1909 г. бельгийский исследователь Ф. Янсенс натолкнулся на любопытный факт. В профазе первого мейотического деления парные хромосомы подходили друг к другу, выстраивались параллельно, а затем, коснувшись концами, быстро смыкались.

Несмотря на полный контакт между хромосомами саламандр, с которыми работал Янсенс, очертания каждой из хромосом были видны достаточно четко. Благодаря этому удалось заметить, что во время перекручивания хромосом в месте их переплетения, которое он назвал хиаз- мой, произошел обмен кусками хромосом.

Однако с достоверностью подтвердить методами цитологии наличие обмена не удавалось до тех пор, пока немецкий исследователь К.

Штерн (1931) не использовал так называемое явление транслокации, т. е. переноса оторвавшегося куска одной хромосомы на другую хромосому. Ему удалось при помощи транслокации перенести кусок Y-хромосомы дрозофилы к Х-хромосоме, после чего последнюю без труда можно было обна ружить на цитологических препаратах. Кроме того, возникшая при этом линия мух несла два генетических отличия (их Х-хромосома имела два легко обнаруживаемых фенотипически так называемых маркирующих рецессивных гена).

Вторым этапом работы был отбор линии двух мух с транслокацией иного рода. В этом случае наблюдения велись над Х-хромосомой, разорвавшейся пополам, после чего одна из ее половин присоединилась к маленькой Y-хромосоме. Оставшийся кусок Х-хромосомы опять-таки был хорошо отличим как цитологически, так и генетически — маркирующие гены у нее были доминантными.

Таким образом, у Штерна оказались две линии дрозофил, четко отличавшиеся друг от друга Х-хромосомами. Соединив обе маркированные Х-хромосомы в зиготе одной . самки, он дождался кроссинговера, распознав его по характеру проявления генов. Цитологически проанализировав клетки потомства мухи, полученной в результате кроссинговера, он смог обнаружить результат кроссинговера в наглядной форме под микроскопом: длинная Х-хромосома обменялась своим большим участком с маленьким куском короткой Х-хромосомы, в результате чего обе хромосомы имели теперь примерно одинаковую длину. Позже аналогичный эксперимент на кукурузе произвела Б. Мак-Клинток (1944).

Искусственное получение мутаций

Крупнейшим достижением экспериментальной генетики было обнаружение возможности искусственно вызывать мутации при помощи разнооб^ разных физических и химических агентов. Г. А. Надсон и Г. С. Филиппов (1925) получили мутации у дрожжей под действием радия и рентгеновых лучей; Г. Мёллер 47 (1927) — при помощи рентгеновых лучей у дрозофилы, a JI. Стадлер (1928) — посредством воздействия этими же лучами у кукурузы.

В изучении проблемы изменчивости начался новый, исключительно плодотворный период.

В короткий срок мутагенный эффект облучения был исследован на многих объектах. Было установлено, что под действием облучения могут возникать мутации любых типов. Вместе с тем для изучения проблемы воздействия лучистой энергии на биологические системы решающее значение имело выяснение мутагенной активности различных родов излучений. Оказалось, что все известные виды излучений способны вызывать наследственные изменения. В середине 30-х годов была сформулирована теория, описывающая кинетические зависимости инактивирующего и мутагенного эффекта ионизирующих излучений — так называемая «теория мишени». Важнейшие эксперименты, ставшие основой этой теории, были выполнены в период 1931—1937 гг. Н. В. Тимофеевым- Ресовским, М. Дельбрюком, Р. Циммером и другими исследователями.

Важным достижением на пути к искусственному получению мутаций явились работы В. В. Сахарова (1932, 1938) и М. Е. Лобашева (1934, 1935) по химическому мутагенезу. Сахаров показал мутагенное действие иода, а Лобашев —- аммония. Новый этап изучения роли химических факторов в процессе мутаций был открыт И. А. Рапопортом (1943, 1946, 1947) и Ш. Ауэрбах (1943), указавшими на мощное мутагенное действие некоторых химических веществ.

В настоящее время известно большое количество веществ, усиливающих мутационный процесс. Разработана теория действия мутагенных соединений на наследственные структуры, интенсивно разрабатываются проблемы специфичности действия мутагенов.

Классификация мутаций

Большой материал, накопившийся в области изучения наследственной изменчивости, позволил создать классификацию типов мутаций.

Было установлено существование трех классов мутаций — генных, хромосомных и геномных. К первому классу относятся изменения, затрагивающие лишь один ген. В этом случае либо полностью нарушается работа гена и, следовательно, организм теряет одну из функций, либо изменяется его функция. Хромосомные мутации, т. е. изменения в структуре хромосом, в свою очередь, подразделяются на несколько типов.

Кроме транслокаций, о которых шла речь выше, может произойти удвоение, утроение и т. д. отдельных участков хромосомы. Такие мутации называют дупликацией. Иногда оторвавшийся кусок хромосомы может остаться в той же хромосоме, но окажется в перевернутом виде; при этом порядок расположения генов в хромосоме изменяется. Этот тип мутаций называют инверсией. Если утрачивается участок хромосомы, говорят о делеции, или нехватке. Все эти типы хромосомных перестроек объединяют под общим термином — хромосомные аберрации.

Наконец, мутации могут выражаться в изменении числа хромосом. Такие мутации именуют геномными. Оказалось, что отдельные хромосомы могут удваиваться или теряться, в результате чего образуются гете- роплоиды. Чаще набор хромосом увеличивается в кратное число раз и возникают полиплоиды, т. е. клетки или целые организмы с избыточными наборами хромосом.

Изучение наборов хромосом (кариотипов) различных видов выявило широкую распространенность полиплоидии в природе, особенно среди растений, для многих из которых описано большое количество полиплоидных рядов. Например, представители рода Triticum располагаются в такой ряд — Triticum топососсит имеет 14 хромосом (диплоиды); Tr. turgidum, Tr. durum несут 28 хромосом (тетраплоиды); у Tr. vulgare и Tr. spelta число хромосом равно 42 (гексаплоиды). В роде Solanum прослежен ряд: 12, 24, 36, 48, 60, 72, 96, 108, 144 хромосом (гаплоидное число хромосом в этом роде может умножаться до 24 раз). Род Rosa характеризуется рядом: 14, 21, 28, 35, 42, 56 хромосом. Полиплоидные ряды не обязательно содержат члены с удвоенными, учетверенными, ушестеренными и т. д. наборами хромосом. Так, в роде Crepis наблюдается четко выраженная полиплоидия, но число хромосом в ряду возрастает следующим образом: 6, 8, 10, 12, 16, 18, 24, 40, 42. Таких родов в растительном царстве много.

Искусственное получение полиплоидов

После обнаружения естественных полиплоидов удалось искусственно получить полиплоиды различных организмов. Это открытие явилось важнейшим достижением экспериментальной генетики.

Одними из первых искусственных полиплоидов оказались томаты и паслен с учетверенными наборами хромосом, полученные Г. Винклером в 1916 г. С открытием полиплоидогенных веществ (алкалоид колхицин, продукт возгонки нефти — ацетанафтен и др.) стало возможным необычайно ускорить получение полиплоидов и на их базе начать селекцию новых, выоокоурожайных сортов растений.

В 1927 г. Г. Д. Карпеченко методом полиплоидии впервые в мире «оздал новый, не встречающийся в природе организм, названный Rapha- nobrassica, в котором хромосомы редьки (Raphanus) объединились с хромосомами капусты (Brassica). В зависимости от содержания хромосом того или иного рода в клетках нового растения менялась форма его плодов. Так, при равном количестве тех и других хромосом плод был наполовину редечным, наполовину капустным; при сочетании 9 редечных хромосом и 18 капустных он на две трети был капустным и на треть редечным и т. д. Оценивая свою работу, Карпеченко отмечал, что она может рассматриваться как экспериментальное обоснование теории гибридного происхождения полиплоидных видов. Шведский генетик А. Мюнтцинг (1930)

, применив метод скрещиваний, сумел из двух 16-хромосомных видов пикульника (Galeopsis speciosa, G. pubescens) получить третий — 32-хромосомный— G. tetrah/it (1932).

В дальнейшем было выяснено, что полиплоидия не ограничивается миром растений. Применив тот же метод полиплоидизации, Б. JI. Астауров добился в 40-х годах получения плодовитых гибридов при скрещивании шелкопрядов двух видов Bombyx mori и В. mandarina.

<< | >>
Источник: И. Е. АМЛИНСКИЙ, Л. Я. БЛЯХЕР. ИСТОРИЯ БИОЛОГИИ С НАЧАЛА ХХ ВЕКА ДО НАШИХ ДНЕЙ. 1975

Еще по теме Проблема внутрихромосомной локализации генов:

  1. 3.6.5. Характеристика генотипа как сбалансированной по дозам системы взаимодействующих генов 3.6.5.1. Значение сохранения дозового баланса генов в генотипе для формирования нормального фенотипа
  2. Локализация действия яда.
  3. Второй закон. Локализация события
  4. Регуляция активности генов и белков
  5. 3.6.6.3. Регуляция экспрессии генов у прокариот
  6. 6.3.1.3. Наследование признаков, обусловленных взаимодействием неаллельных генов
  7. 3.6.6. Регуляция экспрессии генов на геномном уровне организации наследственного материала
  8. 11.5. ГЕНЕТИКО-АВТОМАТИЧЕСКИЕ ПРОЦЕССЫ (ДРЕЙФ ГЕНОВ)
  9. Устойчивость генов, прошедших естественный отбор
  10. Нерешенные проблемы
  11. 6.3.2. Закономерности наследования внеядерных генов. Цитоплазматическое наследование