МИНЕРАЛЬНАЯ ЧАСТЬ ПОЧВЫ
Минеральная часть почвы возникла в результате выветривания горных пород и минералов верхних слоев литосферы и их превращений в процессе почвообразования. Это подтверждается сходством химического состава литосферы и почв.
Под совокупным влиянием на минеральную природу физических и химических факторов, в особенности живых организмов (растений и микроорганизмов), произошли глубокие изменения, которые и привели к образованию на поверхности земной коры почвенного покрова.Таким образом, «строителями» почвы являются растения и микроорганизмы, а также микро- и макрофауна, обитающая в почве, строительным же материалом - горные (материнские) породы и окружающая их атмосфера и гидросфера, а энергетическим источником почвообразования - солнечная энергия.
Почвы наследуют геохимические особенности почвообразующих пород. Например, богатство породы окисью кремния определяет и повышенное содержание его в почве, а избыток глинистых минералов отражается на преобладании их в генетических горизонтах почвы. На карбонатных породах развиваются почвы, обогащенные щелочно-земельными элементами, а на засоленных породах формируются засоленные почвы и т.д. Однако решающую роль в почвообразовании играет биологический фактор.
Под влиянием живых организмов в почве по сравнению с земной корой количество углерода увеличилось в 20 раз, а азота - в 10 раз. Это свидетельствует о том, что растения способствуют накоплению биологически важных элементов в почве. Почвообразование в естественных условиях протекает довольно медленно. С помощью удобрений и правильной агротехники интенсивность почвенных процессов можно значительно ускорить. Например, при применении удобрений усиливается жизнедеятельность не только растений, но и почвенной микрофлоры, что резко ускоряет процессы
накопления органических веществ и биологически важных элементов, т.е. повышается плодородие почвы.
б о
с/Ч “ Ф “ [ЗД]6'
Рис. 3.1. Группы соединений тетраэдров 8Ю4
В преобладающей части почв минеральную основу ее твердой фазы составляют кремнекислородные соединения. Самый распространенный минерал в почве - кварц (окись кремния). Алюминий и железо большей частью входят в состав алюмосиликатных и ферро- силикатных минералов. Атомы кремния в соединении с кислородом образуют прочносвязанные группы 8104, в которых кремний окружен в тетраэдрической координации четырьмя атомами кислорода. Так как кремний четырехвалентен, а кислород двухвалентен, то тетраэдр 8Ю4 имеет ненасыщенные валентности кислорода, его можно рассматривать как четырехзарядный анион. Весьма существенна способность тетраэдров 8Ю4 соединяться между собой с образованием групп из определенного числа атомов кремния и кислорода (рис. 3.1).
В структуре минералов тонкодисперсных фракций почв кремнекислородные тетраэдры соединены в слои, цепочки или изолированные группы тетраэдров 8Ю4, представляющие собой сложные анионные комплексы, так как у атома кислорода, не участвующего в соединении между собой двух 8Ю4-тетраэдров, остается свободная валентность или один отрицательный заряд. В
сложных сочетаниях из кремнекислородных тетраэдров часть атомов кремния может быть замещена атомами алюминия, что повышает ненасыщенность анионного радикала.
В кристаллической решетке кварца тетраэдр 8104 соединен через общие атомы кислорода с четырьмя другими тетраэдрами 8104 по схеме
Общая формула такого соединения (8Ю2)и. У полевых шпатов часть атомов кремния в подобной структуре замещается на алюминий, вследствие чего у такого кремнеалюмокислородного каркаса возникает отрицательный заряд, который компенсируется соответствующим количеством катионов натрия, кальция и других, располагающихся внутри каркаса, в «полостях» решетки.
Например, полевой шпат альбит, имеющий общую формулу Ыа^АЮв], построен из связанных между собой кремнекислородных и алюмо- кислородных тетраэдров, причем на каждые три атома кремния приходится один атом алюминия и один ион натрия, нейтрализующий отрицательный заряд каркаса.Алюминий в тетраэдрической координации с ионами кислорода или гидроксила образует октаэдрические группы, в которых ион алюминия окружен шестью ионами кислорода или гидроксила. Общая формула такого соединения (слоя) [А1(0Н)3]л соответствует составу минерала гиббсита (гидраргиллита), встречающегося в почве. Структуру подобных минералов можно записать следующим образом:
...[(ОН)зА12(ОН)з] • л ...[(ОН)зА12(ОН)з] ¦ и...[(ОН)3А12(ОН)3] • л.
Формула показывает химический состав слоя (пакета), а точки - межпакетные промежутки.
В почвах встречаются первичные и вторичные минералы. К первичным относятся минералы, перешедшие из земной коры в почву в неизмененном или почти неизмененном виде. К ним можно отнести минералы почвенного скелета: кварц и его разновидности, полевые шпаты, в том числе плагиоклазы, слюды, роговые обманки, авгит, турмалин, магнетит, кальцит, доломит и др. Первичные минералы входят в состав материнских почвообразующих пород, возникших в результате выветривания и разрушения горных пород, из которых
слагается оболочка земной коры. В почвах эти минералы присутствуют в основном в виде частиц песчаной размерности (от
- 05 до 1,0 мм) и пылеватых частиц (от 0,001 до 0,05 мм). В незначительном количестве некоторые из них присутствуют в виде илистых (lt;0,001 мм) и коллоидных (lt;0,25 мкм) частиц.
Из первичных минералов под влиянием химических и физикохимических процессов (гидратации, гидролиза, окисления) и жизнедеятельности различных организмов в почве образуются гидраты полуторных окислов и кремнеземы, различные соли, а также вторичные минералы (минералы глин) - каолинит, монтмориллонит, гидрослюды и др. Они находятся в основном в виде илистых и коллоидных частиц и редко в виде пылеватых частиц, т.е.
отличаются высокой дисперсностью.В основе кристаллической решетки алюмосиликатных минералов мелкодисперсной фракции почв лежат сочетания из кремнекислородных тетраэдрических и алюмогидроксильных октаэдрических слоев.
У каолинита кристаллическая решетка образована пакетами из двух слоев, связанных между собой общими атомами кислорода: тетраэдрического кремнекислородного и октаэдрического алюмо- гидроксильного по типу
... [03812020НА12(0Н)3] • п ... [03812020НА12(0Н)3] ¦ п.
У монтмориллонита, гидрослюд пакет кристаллической решетки образован одним алюмогидроксильным слоем и двумя присоединенными к нему кремнекислородными по типу
... [03812020НА120Н028Ь03] • п ... [03812020НА120Н0281203] п ...
У минералов каолинитовой группы связь между пакетами прочнее, межпакетные пространства небольшие. Взаимодействие микрокристаллических частиц с раствором в этом случае происходит только на внешней поверхности.
У минералов монтмориллонитовой группы межпакетные пространства больше, связь между пакетами непрочная, при увлажнении вода входит в межпакетные пространства. Поэтому в обмене на катионы почвенного раствора принимают участие катионы, расположенные как на поверхности частиц, так и находящиеся в межпакетных промежутках. Этим объясняется более высокая обменная поглотительная способность минералов монтмориллонитовой группы, а также наличие у них необменного поглощения катионов.
Почвенные глинистые минералы разделяются на четыре группы: монтмориллонитовые (монтмориллонит, бейделлит, нонтро- нит и др.), каолинитовые (каолинит и галлуазит), гидрослюды и минералы полуторных окислов (гематит, бемит, гидраргиллит, гётит и др.). Из вторичных минералов наивысшей поглотительной способностью обладают монтмориллонитовые, наименьшей - каолинит. Например, емкость поглощения каолинита в 8-15 раз меньше емкости поглощения монтмориллонита. Эта особенность минералов имеет существенное значение в поглощении удобрений и ее следует учитывать при их применении.
Вторичные алюмосиликатные минералы в почве находятся в виде кристаллов, имеют высокую дисперсность, обладают большой поглотительной способностью.В состав минеральной части почвы входят и аморфные вещества. Это гидраты окислов алюминия А120з*лН20 и железа Ре20з*лН20, а также гидраты кремнезема 8Ю2*иН20. Они могут кристаллизоваться. Минералы окислов и гидроксилов алюминия и железа встречаются в значительных количествах в красноземах и желтоземах.
По химическому составу минералы подразделяются на силикаты и алюмосиликаты. Из силикатов наиболее распространен кварц. Обычно в почвах его содержится более 60%, а в песчаных - выше 90%. Это химически инертный, стойкий и прочный минерал.
Алюмосиликаты представлены первичными и вторичными минералами. Из первичных больше всего полевых шпатов: калиевых (ортоклаз КА^зОв) и натриево-кальциевых (плагиоклазы). Слюд в почве меньше по сравнению с полевыми шпатами. Они содержат калий. Мусковит содержит много алюминия, а биотит - это железисто-магнезиальная слюда. Полевые шпаты и слюды постепенно разрушаются, освобождая калий, кальций, магний, железо и другие питательные элементы для растений.
Вторичные алюмосиликаты по химической природе относятся к гидроалюмосиликатам и подразделяются на три группы.
- Монтмориллониты (монтмориллонит - А128140ю(0Н)2 ^Н20, бейделлит - А1381з09(0Н)з‘лН20 и др.). Эта группа глин характеризуется высокой дисперсностью, набухаемостью, липкостью и вязкостью.
- Каолиниты (каолинит - А1281205(0Н)4 и галлуазит А1281205(0Н)4-2Н20). Эта группа глин менее дисперсна, обладает небольшой набухаемостью и липкостью. В дерново-подзолистых почвах и черноземах, сформированных на покровных суглинках, в составе высокодисперсных минералов преобладают монтмориллонит и гидрослюды. В красноземах, желтоземах и дерново-подзолистых почвах, образовавшихся на продуктах древнего гумидного выветривания гранита, в значительных количествах содержатся минералы каолинитовой группы.
- Гидрослюды (гидромусковит, гидробиотит, вермикулит) образуются из слюд, имеют непостоянный химический состав, по физическим свойствам занимают среднее положение между монтмориллонитом и каолинитом. Слюды определяют агрохимические и физические свойства почвы. Они являются источником калийного питания растений. Энергия поглощения калия коллоидами велика, вследствие чего в поглощающем комплексе многих почв его содержится 0,5-10 ммоль/100 г почвы. В некоторых почвах имеется недостаток калия, например в красноземах, латеритах, что объясняется малым содержанием в них слюд и гидрослюд и богатством почв минералами каолинитовой группы, которая почти не содержит калия.
Вторичные минералы имеют кристаллическую природу. К представителям слабо окристаллизованных минералов и прочих веществ, играющих важную роль в поглотительной способности почв, относятся аллофан, свободная кремнекислота, аморфные полуторные окислы (т. е. окислы железа и алюминия), различные кислоты и их соли (карбонаты, сульфаты, нитраты, хлориды, фосфаты кальция, магния, калия и натрия).
В почве кроме макроэлементов содержится некоторое количество микроэлементов: одних (йод, бор) больше, чем в литосфере, других (медь, кобальт) меньше, а некоторых примерно столько же (табл. 3.1). Основным источником микроэлементов в почве служат почвообразующие горные породы. Например, почвы, образовавшиеся на продуктах выветривания кислых пород (граниты, липариты, граниты-порфиры и др.), бедны никелем, кобальтом, медью, а почвы, образовавшиеся на продуктах выветривания основных пород (базальтах, габбро и др.), наоборот, обогащены этими элементами. Некоторые микроэлементы (I, В, Б, Бе, Аз) могут поступать в почву с газами из атмосферы, от вулканических извержений и с метеоритными осадками, причем для таких микроэлементов, как йод, фтор, эти источники являются основными.
3.1. Содержание микроэлементов в почве (А) и литосфере (Б), масс. %
Элемент |
А |
В |
Элемент |
А |
В |
Мп |
8,5 ¦ 10'2 |
9 • 10'2 |
Си |
2 • 10'3 |
1 • 10'2 |
И |
2 • 10'2 |
2,7 • 10’2 |
Ъп |
5 • 10'3 |
5 • 10'3 |
\?а |
1 • 10'2 |
1,5 • 10'2 |
Со |
О ОО |
3 • 1(Г3 |
В |
1 • 10'3 |
3 • КГ4 |
Мо |
3 • кг4 |
3 • 10" |
N1 |
4 • 10'3 |
ОО О |
I |
5 • 10-4 |
3 • 10‘5 |
Разные по гранулометрическому составу фракции минеральной части почвы резко различаются по содержанию различных минералов. В песке и крупной пыли преобладают кварц и полевые шпаты. А мелкодисперсные (lt;0,001 мм) илистая и коллоидная фракции состоят главным образом из вторичных алюмосиликатных минералов. В связи с этим различные механические фракции почвы существенно различаются по химическому составу.
В песчаных и пылеватых почвах кремния больше. С уменьшением размера частиц его содержание снижается, а количество алюминия, железа, калия, магния и фосфора возрастает (табл. 3.2). Высокодисперсная часть почвы содержит и гумус-показатель ее потенциального плодородия. Поэтому илистая и коллоидная фракции представляют наибольшую ценность для питания растений. Эти фракции обусловливают и поглотительную способность почвы. В них наиболее активно протекают процессы физической и физикохимической адсорбции.
3.2. Примерный химический состав разных механических фракций почвы,
масс. %
Фракции, мм |
81 |
А1 |
Ре |
Са |
К |
Р |
|
1,0-0,2 |
43,4 |
0,8 |
0,8 |
0,3 |
0,3 |
0,7 |
0,02 |
0,2-0,04 |
43,8 |
1,1 |
0,8 |
0,4 |
0,1 |
1,2 |
0,04 |
0,04-0,01 |
41,6 |
2,7 |
1,0 |
0,6 |
0,2 |
1,9 |
0,09 |
0,01-0,002 |
34,6 |
7,0 |
3,6 |
1,1 |
0,2 |
3,5 |
- |
lt; 0,002 |
24,8 |
11,6 |
9,2 |
1,1 |
0,6 |
4,1 |
0,18 |
Почвы разного гранулометрического состава существенно различаются по физическим, физико-химическим и химическим свойствам. Неодинаков у них и минералогический состав.
Песчаные и супесчаные почвы состоят из кварца и полевых шпатов, суглинистые - из смеси первичных и вторичных минералов, а глинистые - преимущественно из вторичных глинистых минералов с примесью кварца.
Содержание основных зольных питательных веществ - кальция, калия, магния, железа и др. - также определяется степенью дисперсности почв, так как они содержатся в минеральной части почвы, фосфор и сера находятся как в минеральной, так и в органической части, а количество азота определяется уровнем гумусированности почв. Следовательно, почвы разного гранулометрического состава существенно различаются и по содержанию в них питательных элементов. Более тяжелые глинистые и суглинистые почвы богаче элементами питания, чем песчаные и супесчаные.
Еще по теме МИНЕРАЛЬНАЯ ЧАСТЬ ПОЧВЫ:
- Минеральный азот почвы и его формы
- СОСТАВ И СВОЙСТВА МИНЕРАЛЬНОЙ И ОРГАНИЧЕСКОЙ ЧАСТЕЙ ПОЧВЫ
- ОЦЕНКА КАЧЕСТВА БЕЛКОВО-ВИТАМИННО-МИНЕРАЛЬНЫХ И АМИДО-ВИТАМИННО-МИНЕРАЛЬНЫХ ДОБАВОК
- Энергосберегающие способы основной обработки почвы в технологии возделывания кукурузы Водный режим почвы
- Минеральные добавки
- Минеральное питание
- О ЦЕЛЕСООБРАЗНОМ АССОРТИМЕНТЕ МИНЕРАЛЬНЫХ УДОБРЕНИИ [44]
- НАРУШЕНИЯ МИНЕРАЛЬНОГО ОБМЕНА
- Минеральное питание
- ДИАГНОСТИКА МИНЕРАЛЬНОГО ПИТАНИЯ ПЛОДОВЫХ И ЯГОДНЫХ КУЛЬТУР
- Биоэнергетическая эффективность применения гуматизированных минеральных удобрений
- К ВОПРОСУ ОПТИМИЗАЦИИ МИНЕРАЛЬНОГО ПИТАНИЯКУЛЬТУРНЫХ РАСТЕНИЙ НА БОЛОТНЫХ ПОЧВАХ В. К. Бахнов
- РОЛЬ МИНЕРАЛЬНОГО И БИОЛОГИЧЕСКОГО АЗОТА В ЗЕМЛЕДЕЛИИ СССР [40]
- БОЛЕЗНИ НАРУШЕНИЙ МИНЕРАЛЬНОГО ОБМЕНА