Сцепление и кроссинговер |
Автор: Administrator |
20.10.2010 17:42 |
Рассматривая 2-й закон наследственности, мы видели, что перераспределение генов имеет независимый характер и связано с прохождением отцовского и материнского членов каждой пары хромосом при мейозе в разные гаметы. Следовательно, в независимое перераспределение или рекомбинацию генов вовлекаются те наборы генов, которые располагаются на разных хромосомах. Такую рекомбинацию называют свободной рекомбинацией. Однако еще в 1910 г. Т. Морган установил, что гены, располагающиеся на одной хромосоме, сцеплены между собой, причем степень сцепления генов зависит от расстояния между ними. Следовательно, Т. Морган установил, что 2-му закону наследственности подчиняются лишь гены, локализованные на разных хромосомах. Однако значение этих наблюдений заключалось также и в том, что они послужили основой для формулирования в дальнейшем Т. Морганом и его сотрудниками представлений о линейном расположении генов на хромосомах. На основе этих представлений стали создавать генетические карты хромосом не только дрозофилы, но и других организмов. Сцепление генов хорошо изучено в случаях многих видов животных и растений, показано, что оно присуще как женским, так и мужским особям. Чтобы лучше понять природу сцепления, рассмотрим его на описанном шведским генетиком Хатчисоном примере сцепления генов, детерминирующего форму и окраску семян кукурузы. Обозначим символом С доминантный аллель, детерминирующий окраску семян, символом с — рецессивный аллель, детерминирующий отсутствие окраски семян, символом S — доминантный аллель, детерминирующий нормальную форму семян и символом s — рецессивный аллель, детерминирующий морщинистость семян . Если скрещивать растения CS/CS и cs/cs, то гибриды F,, обладая генотипом CS/cs, будут давать окрашенные семена нормальной формы. В соответствии со вторым законом наследственности при независимом перераспределении генов С и S гибриды F1 должны были продуцировать гаметы CS, Cs, cS и cs, причем в равных количествах, оплодотворение которых гаметами организмов cess (скрещивание гибридов F1 с исходным родителем cess) должно было дать потомство четырех фенотипических типов в отношении 1:1:1:1. Между тем скрещивание гибридов F1 с исходными родительскими организмами cess приводило к получению организмов в совершенно иных количественных отношениях, а именно: — растения CS/cs (окрашенные семена нормальной формы) — 4032, — растения Cs/Cs (окрашенные сморщенные семена) — 149, — растения cS/cs (бесцветные семена нормальной формы) — 152 и — растения cs/cs (бесцветные сморщенные семена) — 4035. Легко видеть, что среди 8368 растений превалировали организмы, дающие окрашенные нормальные по форме и бесцветные сморщенные семена (4032 + 4035 = 8067, или 96,4%), т. е. характеризующиеся комбинациями родительских признаков. Что касается остальной части растений (149 + 152 == 301, или 3,6% от 8368), которые давали окрашенные сморщенные и бесцветные нормальной формы семена, то они обладали рекомбинантными признаками. Если бы растения этих четырех типов встречались в равных количествах, то это означало бы независимое перераспределение (рекомбинацию) генных пар С-с и S-s. Между тем полученные результаты свидетельствовали о том, что перераспределение этих генных пар является зависимым, ибо комбинации родительских генов встречаются чаще, чем в 50% случаев. Другими словами, последние сцеплены между собой в 96,4% случаев. То, что данные две пары генов имеют зависимое распределение, нашло также подтверждение в экспериментах по скрещиванию кукурузы, одни из которых дают бесцветные нормальной формы семена, а другие — окрашенные сморщенные семена. Следовательно, любые родительские комбинации двух пар генов, локализованных на одной и той же хромосоме, благодаря сцеплению оказываются вместе в одинаковом количестве гамет, продуцируемых гетерозиготами. Рассмотренный пример сцепления двух генов является самым простым. Между тем можно предположить далее, что если ген А сцеплен с генами В и С, тогда последние также сцеплены между собой. Изучение сцепления генов у многих организмов путем скрещивания и определения независимого или зависимого (сцепленного) характера в распределении их генов позволило установить, что сцепление встречается между многими генами, а сцепленные гены составляют группы сцепления. Следовательно, геномы состоят из групп сцепленных генов или просто групп сцепления, причем количество групп сцепления обычно соответствует количеству хромосомных пар. У дрозофилы, имеющей 4 пары хромосом, установлено 4 группы сцепления, у кукурузы — 10 хромосомных пар и 10 групп сцепления, у садового гороха — 7 пар хромосом и 7 групп сцепления. В случае животных, у которых пол детерминируется генетически, следует рассматривать гены, расположенные на Х- и Y-xpo-мосомах, в качестве самостоятельных групп сцепления. Как мы уже отмечали, в соответствии с заключением Т. Моргана гены сцеплены тогда, когда локализованы на одной хромосомной паре. Допуская, что хромосомы остаются интактными при вступлении их в гаметы, локализованные на них гены всегда наследуются вместе. В этом случае можно говорить об их полном сцеплении. Однако, рассматривая сцепление генов у кукурузы, мы видели, что полного сцепления генов не бывает, поскольку происходит формирование гамет не только двух родительских типов, но и гамет рекомбинантных типов (вследствие рекомбинации генов). Об отсутствии полного сцепления свидетельствуют также данные, полученные при изучении других организмов, механизм этого явления заключается в том, что в процессе гаметогенеза хромосомы клеток могут подвергаться разрывам в одном или нескольких местах, а сегменты, образующиеся в результате разрыва одной хромосомы, могут смыкаться с сегментами гомологичной хромосомы при условии, что в последней тоже были разрывы, причем в аналогичных местах. Как мы видели, гены С и S у кукурузы в 97% случаев (гамет) остаются сцепленными в родительских комбинациях и примерно в 3% случаев (гамет) они не связаны между собой и находятся в рекомбинантных сочетаниях. Обмен между хромосомными сегментами гомологичных хромосом, сопровождаемый рекомбинацией сцепленных генов, получил название кроссинговера (Т. Морган), а явление, обусловленное этим механизмом, называют генетической рекомбинацией. В результате рекомбинации из двух исходных комбинаций генов создается новая комбинация. Возвращаясь к случаю рекомбинации генов у кукурузы, можно сказать, что кроссинговер произошел в сегменте хромосомы между локуса-ми (местами), занимаемыми генами С и S, вследствие двух разрывов в этих участках хромосомы у отдельных клеток. Кроссинговер начинается с того, что гомологичные хромосомы спариваются. После этого каждый гомолог спаренных хрмосом расщепляется на две хроматиды, удерживаемые центромерой, причем между двумя хроматидами из четырех устанавливаются так называемые хиазмы (Х-образные фигуры или перекресты). В дальней шем в этих двух хроматидах происходят разрывы, за которыми наступает воссоединение концов разорванных хроматид. Благодаря разрыву и воссоединению сегментов происходит формирование новых хроматид . Важно подчеркнуть, что хиазмы обусловливают перекресты лишь двух хроматид из четырех, не нарушая при этом структуры остальных двух хроматид, вследствие чего кроссинговер захватывает только две хроматиды. Благодаря этому сформированные в процессе мейоза хромосомы несут гены, располагавшиеся до мейоза на разных членах пар гомологичных хромосом. Классическая методика измерения сцепления заключается в скрещивании организмов, различающихся между собой по двум и более сцепленным генам, в получении гетерозиготных по этим генам гибридов F1 (например, АВ/ав или Ав/аВ), в обратных скрещиваниях гибридов F1 с гомозиготными по этим генам организмами (ав/ав) и в учете особенностей потомства, полученного после обратных скрещиваний. Установив количество особей с родительскими комбинациями генов и особей с рекомбинациями генов, определяют частоту рекомбинаций (в процентах к общему количеству организмов, полученных после обратных скрещиваний). Другие методы измерения сцепления основаны на результатах гибридизации соматических клеток или результатах клонирова-ния генов. На степень сцепления генов влияют различные факторы. Известно, что частота кроссинговера снижается с возрастом организмов, под воздействием ионизирующей радиации и других сильнодействующих факторов. Кроссинговер, как уже отмечено, имеет место лишь в процессе гаметогенеза при мейозе. Однако он может происходить и в соматических клетках. Соматический кроссинговер установлен у растений и животных многих видов. У организмов, размножающихся только половым путем, результаты соматического кроссинговера не наследуются. Пехов А. П. Биология с основами экологии. Серия «Учебники для вузов. Специальная литература» — 2000. |